People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Taylor, Susan
Queen's University Belfast
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2023Experimental and numerical investigation of compressive membrane action in GFRP-reinforced concrete slabscitations
- 2023Characterisation of hemp shiv and its effect on the compressive strength of hemp concretecitations
- 2022Effect of the Treatments of the Surface on Mechanical Performance of Concrete Containing Chemical Admixtures
- 2022Factorial design modelling of cement grout containing dolomitic quarry dust powdercitations
- 2022Assessment of the influence of the type of filler materials on the properties of cement groutscitations
- 2020Experimental Investigation of Strain Sensitivity for Surface Bonded Fibre Optic Sensorscitations
- 2019Recycling ceramic waste powder: effects its grain-size distribution on fresh and hardened properties of cement pastes/mortars formulated from SCC mixescitations
- 2017The influence of arching action on BFRP reinforced SCC deck slabs in Thompson bridge
- 2016Experimental Study of Interfacial Stress Distribution of Bonded-in BFRP Rod Glulam Joints Using Fibre Optic Sensors (FOS)citations
- 2016Glued-in basalt frp rods as moment connections in box section frames
- 2016Effect of waste ceramic powder on strength development characteristics of cement based mortars
- 2015Nový přístup k určení optimální dávky superplatifikátorůa jejich kompatibility s cementovými materiály
- 2015Post-tensioning glulam timber beams with basalt FRP tendonscitations
- 2014POST-TENSIONING OF TIMBER BEAMS WITH BASALT FIBRE REINFORCED POLYMER
- 2014Influence of embedded length on strength of BFRP rods bonded parallel to the grain in low grade timber by pullout-bending tests
- 2014Post-tensioning of glulam timber with steel tendonscitations
- 2014Development of Novel Post-Tensioned Glulam Timber Composites
- 2014Compability of Superplasticizers with Cementitious Materials
- 2012Influence of the type of coarse lightweight aggregate on properties of Semi-Lightweight Self-Consolidating Concretecitations
- 2009Monitoring of Corrosion in Structural Reinforcing Bars: performance comparison using in-situ fibre optic and electric wire strain gauge systemscitations
- 2009In situ cross-calibration of in-fibre Bragg Grating and Electrical Resistance Strain Gauges for structural monitoring using an extensometercitations
Places of action
Organizations | Location | People |
---|
article
Influence of the type of coarse lightweight aggregate on properties of Semi-Lightweight Self-Consolidating Concrete
Abstract
This paper presents studies on the properties of fresh and hardened semilightweight self-consolidating concrete (SLWSCC) mixtures, produced with two types of manufactured coarse lightweight aggregates (LWA) and normal weight sand. The first type, a sintered pulverized fuel ash, was made from an industrial by-product, fly ash, whereas the second one, an expanded clay, was produced from a naturally sourced clay. For all mixtures, normal weight sand was used as a fine fraction of aggregates, and the portland cement was partially replaced with a limestone powder. The SLWSCC was produced with different water presaturation regimes of the LWAs. The desired initial slump-flow spread was set between 700 and 800 mm. The effect of three superplasticizers was evaluated by testing properties of SLWSCC, normal weight SCC, and paste mixtures. Three SCC fresh properties were measured: the slump-flow, the V-funnel flow time, and the J-ring blocking step. Moreover, the slump-flow loss was evaluated. The degree of segregation was assessed in both fresh and hardened states. Additionally, the hardened density and the compressive strengths were tested. All SLWSCC mixtures were produced with a desired range of slump-flow spread and with satisfactory passing ability assessed with the J-ring test. SLWSCCs prepared with the expanded clay LWA were less sensitive to the variation of water presaturation levels and showed lower viscosity than those made with the sintered pulverized fuel ash LWA. Only mixtures containing SP-3 superplasticizer showed acceptable workability loss resistance. The saturated surface-dry density of all of the mixtures varied in a range of 2,025–2,125??kg/m 3. Mixtures containing 29% of coarse LWAs and 71% of sand (by mass) had 24-h and 28-day compressive strengths above 20 and 40 MPa, respectively, but the mixtures made with the expanded clay were slightly weaker.