People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ferreira, C.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2021Thermo-chemo-hygro-mechanical simulation of the restrained shrinkage ring test for cement-based materials under distinct drying conditionscitations
- 2017Stiffness Behavior of Soil Stabilized with Alkali-Activated Fly Ash from Small to Large Strainscitations
- 2016Distribution of toxic elements in teeth treated with amalgam using mu-energy dispersive X-ray fluorescencecitations
- 2016Development of high-performance knitted structures for cut and puncture protection
- 2016Estrutura fibrosa auxética com fios de elevado desempenho para proteção mecânica
- 2015Development of High-performance Single Layer Weft Knitted Structures for Cut and Puncture Protection
- 2014Influence of nanohydroxyapatite surface properties on Staphylococcus epidermidis biofilm formationcitations
- 2012Optimization of nickel biosorption by chemically modified brown macroalgae (Pelvetia canaliculata)citations
- 2011In situ evaluation of a new silorane-based composite resin's bioadhesion propertiescitations
- 2010Study on the compressive behaviour of functional knitted fabrics using elastomeric materials
- 2007Comparison of simultaneous bender elements and resonant column tests on porto residual soilcitations
Places of action
Organizations | Location | People |
---|
article
Stiffness Behavior of Soil Stabilized with Alkali-Activated Fly Ash from Small to Large Strains
Abstract
Alkaline activation of fly ash creates a geopolymeric cement that can replace ordinary portland cement in several applications such as soil improvement, with the advantage of much lower carbon dioxide emissions and reusing an industrial by-product otherwise landfilled, which averts several environmental problems. In this paper, the behavior of a silty sand improved by the alkaline activation of fly ash is analyzed from small to large strains by presenting uniaxial and drained triaxial compression test results and seismic wave velocities measured throughout the curing period. The dynamic, cyclic, and static tests showed a significant increase in stiffness with curing time, even beyond the 28-day curing period. On the basis of the nondestructive wave-propagation technique, the increase of the shear and compression wave velocities with time were drawn, giving the evolution of the elastic shear modulus and the Poisson ratio values. The dynamic Young modulus was compared to the correspondent secant Young modulus obtained from the mechanical tests. In addition, the evolution of the properties of this stabilized soil with curing time was compared and confronted to that of soil cement on the basis of the elastic stiffness of both materials, which showed that the most significant difference lies on the curing rate.