People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Korda, Eleni
Vrije Universiteit Brussel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Acoustic signatures of hydration and microcracking in early-age concretecitations
- 2023Monitoring Of Fresh Concrete With Superabsorbent Polymers (Saps) Using Acoustic Emission (AE)citations
- 2023Monitoring of fresh concrete exposed to various environmental conditions using Acoustic Emission (AE) and Digital Image Correlation (DIC)
- 2023The sensitivity of Acoustic Emission (AE) for monitoring the effect of SAPs in fresh concrete
- 2022Shrinkage and settlement assessment of fresh concrete using Digital Image Correlation (DIC) and Acoustic Emission (AE)
- 2022Tensile Performance of Textile-Reinforced Concrete after Fire Exposure: Experimental Investigation and Analytical Approachcitations
Places of action
Organizations | Location | People |
---|
article
Tensile Performance of Textile-Reinforced Concrete after Fire Exposure: Experimental Investigation and Analytical Approach
Abstract
<p>This paper presents investigations on the tensile behavior of several textile-reinforced concrete (TRC) material compositions after fire exposure. First, experimental investigations are presented, aiming to provide insights into the thermomechanical performance of fire-exposed TRC, and data that can be used for the development and implementation of analytical or numerical models to design fire-exposed TRC elements. The applicability of the Aveston-Cooper-Kelly (ACK) theory is assessed for ambient and increased temperatures. TRC specimens with various cases of reinforcement (carbon or glass fibers, uncoated or coated textiles, low or high fiber volume fraction) were manufactured and subjected to temperatures reaching 700°C. The residual tensile capacity of the exposed specimens is discussed, focusing on the effect of the varying reinforcement. It is verified that the use of uncoated carbon fibers is the most promising solution for maintaining the residual capacity after fire exposure. Finally, it is concluded that the ACK predictions are reliable for TRC specimens with good bond conditions and when adopting a representative thermal degradation law for the reinforcement.</p>