People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Porri, Paavo
University of Helsinki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2021Constructing Spacecraft Components Using Additive Manufacturing and Atomic Layer Deposition : First Steps for Integrated Electric Circuitrycitations
- 2021Constructing Spacecraft Components Using Additive Manufacturing and Atomic Layer Deposition:First Steps for Integrated Electric Circuitrycitations
- 2021Constructing Spacecraft Components Using Additive Manufacturing and Atomic Layer Depositioncitations
- 2021Constructing Spacecraft Components Using Additive Manufacturing and Atomic Layer Deposition: First Steps for Integrated Electric Circuitrycitations
Places of action
Organizations | Location | People |
---|
article
Constructing Spacecraft Components Using Additive Manufacturing and Atomic Layer Deposition
Abstract
<p>Many fields, including the aerospace industry, have shown increased interest in the use of plastics to lower the mass of systems. However, the use of plastics in space can be challenging for a number of reasons. Ultraviolet radiation, atomic oxygen, and other phenomena specifically associated with space cause the degradation of polymers. Here we show a path toward creation of space-grade components by combining additive manufacturing (AM) and atomic layer deposition (ALD). Our method produced ALD Al2O3 coated thermoplastic parts suitable for space applications. The highlight of this work is a significant reduction in outgassing, demonstrated using residual gas analyzer (RGA) sampling. Compared to uncoated parts, the ALD Al2O3 coating decreased the outgassing of polyether ether ketone (PEEK), acrylonitrile butadiene styrene (ABS), polycarbonate (PC), and nanodiamond-doped polylactide (ND-PLA) by 46%, 49%, 58%, and 65%, respectively. The manufacturing method used in this work enables the use of topology optimization already in the early concept creation phase. The method is ideally suited for spacecraft applications, in which the volume and mass of parts is critical, and could also be adapted for in-space manufacturing. (c) 2021 American Society of Civil Engineers.</p>