People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Levenberg, Eyal
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Verification and Validation of Pavement Modelscitations
- 2023Full-scale validation of a mechanistic model for asphalt grid reinforcementcitations
- 2023Full-scale validation of a mechanistic model for asphalt grid reinforcementcitations
- 2022The Dynamic Cone Penetrometer as a Seismic Source for Geophysical Exploration in Urban Environments
- 2022The Dynamic Cone Penetrometer as a Seismic Source for Geophysical Exploration in Urban Environments
- 2020Analytic pavement modelling with a fragmented layercitations
- 2016Development of an Optical Displacement Transducer for Routine Testing of Asphalt Concrete
- 2016In Situ Stiffness Profiling using High Resolution Fiber Optic Distributed Sensingcitations
- 2015Modelling asphalt concrete viscoelasticity with damage and healingcitations
- 2013Viscoelastic characterisation of asphalt-aggregate mixes in diametral compressioncitations
- 2011Smoothing asphalt concrete complex modulus test datacitations
- 2009Backcalculation of Anisotropic Pavement Properties using Time History of Embedded Gauge Readings
- 2007Advanced testing and characterization of asphalt concrete materials in tensioncitations
- 2006Constitutive Modeling of Asphalt-Aggregate Mixes with Damage and Healing
Places of action
Organizations | Location | People |
---|
article
Advanced testing and characterization of asphalt concrete materials in tension
Abstract
The modeling of asphalt concrete materials is currently handled using linear viscoelasticity (VE) and viscoplasticity (VP) with damage. Exploratory frequency sweep and creep and recovery test results indicate that the linear VE with damage theory cannot represent the material response unless damage-healing is also included in the formulation. Therefore, the concept of effective stress, used for modeling damage, is extended to include additional nonlinear effects. A new theory of nonlinear VE with damage and VP is presented for uniaxial loading conditions in tension. A special load transfer device is described. It allows very fast unloading and very long recovery periods with complete unloading. It permits better separation between VE and VP components. Using this device, a uniaxial tension creep and recovery test is conducted and analyzed. The nonlinear material response is illustrated and a calibration of the damage function is presented. The formulation is being extended to three-dimensional conditions. © 2007 ASCE.