People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Triantafillou, Thanasis
University of Patras
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (39/39 displayed)
- 2024Diagonal Compression Tests on Unfired and Fired Masonry Wallettes Retrofitted with Textile-Reinforced Alkali-Activated Mortarcitations
- 2023Optimal design of ferronickel slag alkali-activated mortar for repair exposed to high thermal loadcitations
- 2023Seismic Retrofit of RC Short Columns with Textile-Reinforced Alkali-Activated or Cement-Based Mortarscitations
- 2023RESIDUAL PERFORMANCE OF ALKALI-ACTIVATED TRM AFTER EXPOSURE TO HIGH TEMPERATURES
- 2023Innovative Retrofitting of RC Structures Using Textile-Reinforced Alkali-Activated or Cement-Based Mortar Overlays
- 2022Seismic Behavior of Repaired and Externally FRP-Jacketed Short Columns Built with Extremely Low-Strength Concretecitations
- 2022Mechanical behavior of textile reinforced alkali-activated mortar based on fly ash, metakaolin and ladle furnace slagcitations
- 2022Rapid Heating of Textile Reinforced Concrete
- 2022Optimal Design of Ferronickel Slag Alkali-Activated Material for High Thermal Load Applications Developed by Design of Experimentcitations
- 2022Vulnerability assessment of an innovative precast concrete sandwich panel subjected to the ISO 834 firecitations
- 2022Tensile Performance of Textile-Reinforced Concrete after Fire Exposure: Experimental Investigation and Analytical Approachcitations
- 2021State-of-the-art review on experimental investigations of textile-reinforced concrete exposed to high temperaturescitations
- 2020Carbon Textile Reinforced Concrete at ambient and high temperatures
- 2019Effect of pre-damage on the seismic behaviour of FRP retrofitted sub-standard short columns
- 2018Innovative Seismic Isolation of Masonry Infills in Steel Frames using Cellular Materials at the Frame-Infill Interfacecitations
- 2018Innovative seismic isolation of masonry infills using cellular materials at the interface with the surrounding RC framescitations
- 2018Investigation of the bond properties between textile reinforced concrete and extruded polystyrene foam
- 2016Strengthening of Existing Masonry Structurescitations
- 2015Damage detection of reinforced concrete elements retrofitted with FRP by using a wireless measurement system
- 2015Damage detection of reinforced concrete columns retrofitted with FRP jackets by using PZT sensorscitations
- 2014Simulation of PZT monitoring of reinforced concrete beams retrofitted with CFRPcitations
- 2013Use of anchors in shear strengthening of reinforced concrete T-beams with FRPcitations
- 2013Fibre-reinforced polymer reinforcement enters fib Model Code 2010citations
- 2012Use of anchors in shear strengthening of reinforced concrete T-beams with FRP
- 2012Round Robin Test for composite-to-brick shear bond characterizationcitations
- 2009Optimum design of one way concrete slabs cast against Textile Reinforced Concrete Stay-in-Place Formwork Elements
- 2009Innovative Seismic Retrofitting of RC Columns Using Advanced Composites
- 2009Flexural strengthening of reinforced concrete columns with near-surface-mounted FRP or stainless steel
- 2008Textile reinforced mortar (TRM) versus FRP as strengthening material of URM wallscitations
- 2008Innovative seismic upgrading of RC columns in flexure with NSM reinforcement and textile-based jacketing
- 2007Textile-reinforced mortar (TRM) versus FRP as strengthening material of URM wallscitations
- 2005Masonry confinement with fiber-reinforced polymerscitations
- 2004Analysis and minimum cost design of concrete sandwich panels under out-of-plane loadingcitations
- 2004Fiber-reinforced polymer retrofitting of rectangular reinforced concrete columns with or without corrosion
- 2003Experimental investigation of FRP-strengthened RC beam-column jointscitations
- 2002Shear transfer capacity along pumice aggregate concrete and high-performance concrete interfacescitations
- 2002Analysis of FRP-strengthened RC beam-column jointscitations
- 2002Minimum cost design of concrete sandwich panels made of HPC faces and PAC corecitations
- 2000Composites as Strengthening Materials of Concrete Structures
Places of action
Organizations | Location | People |
---|
article
Analysis of FRP-strengthened RC beam-column joints
Abstract
<p>Analytical models are presented in this study for the analysis of reinforced concrete joints strengthened with composite materials in the form of externally bonded reinforcement comprising unidirectional strips or flexible fabrics. The models provide equations for stresses and strains at various stages of the response (before or after yielding of the beam or column reinforcement) until the ultimate capacity is reached, defined by concrete crushing or fiber-reinforced polymer (FRP) failure due to fracture or debonding. Solutions to these equations are obtained numerically. The models provide useful information on the shear capacity of FRP-strengthened joints in terms of the quantity and configuration of the externally bonded reinforcement and may be used to design FRP patching for inadequately detailed beam-column joints. A number of case studies are examined in this article, indicating that even low quantities of FRP materials may provide significant enhancement of the shear capacity. The effectiveness of external reinforcement increases considerably if debonding is suppressed and depends heavily on the distribution of layers in the beam and column. The latter depends on the relative quantities of steel reinforcement crossing the joint panel and the level of axial load in the column. Analytical shear strength predictions were in good agreement with test results found in the literature, thus adding confidence to the validity of the proposed models.</p>