Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rivera-Romero, Octavio

  • Google
  • 1
  • 4
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Role of Participatory Health Informatics in Detecting and Managing Pandemics: Literature Review5citations

Places of action

Chart of shared publication
Miron-Shatz, Talya
1 / 1 shared
Grainger, Rebecca
1 / 1 shared
Denecke, Kerstin
1 / 3 shared
Gabarron, Elia
1 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Miron-Shatz, Talya
  • Grainger, Rebecca
  • Denecke, Kerstin
  • Gabarron, Elia
OrganizationsLocationPeople

article

Role of Participatory Health Informatics in Detecting and Managing Pandemics: Literature Review

  • Miron-Shatz, Talya
  • Grainger, Rebecca
  • Denecke, Kerstin
  • Rivera-Romero, Octavio
  • Gabarron, Elia
Abstract

<jats:p>Objectives: Using participatory health informatics (PHI) to detect disease outbreaks or learn about pandemics has gained interest in recent years. However, the role of PHI in understanding and managing pandemics, citizens’ role in this context, and which methods are relevant for collecting and processing data are still unclear, as is which types of data are relevant. This paper aims to clarify these issues and explore the role of PHI in managing and detecting pandemics.</jats:p><jats:p>Methods: Through a literature review we identified studies that explore the role of PHI in detecting and managing pandemics. Studies from five databases were screened: PubMed, CINAHL (Cumulative Index to Nursing and Allied Health Literature), IEEE Xplore, ACM (Association for Computing Machinery) Digital Library, and Cochrane Library. Data from studies fulfilling the eligibility criteria were extracted and synthesized narratively.</jats:p><jats:p>Results: Out of 417 citations retrieved, 53 studies were included in this review. Most research focused on influenza-like illnesses or COVID-19 with at least three papers on other epidemics (Ebola, Zika or measles). The geographic scope ranged from global to concentrating on specific countries. Multiple processing and analysis methods were reported, although often missing relevant information. The majority of outcomes are reported for two application areas: crisis communication and detection of disease outbreaks.</jats:p><jats:p>Conclusions: For most diseases, the small number of studies prevented reaching firm conclusions about the utility of PHI in detecting and monitoring these disease outbreaks. For others, e.g., COVID-19, social media and online search patterns corresponded to disease patterns, and detected disease outbreak earlier than conventional public health methods, thereby suggesting that PHI can contribute to disease and pandemic monitoring.</jats:p>

Topics
  • impedance spectroscopy
  • concentrating
  • informatics