Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mulaba-Kapinga, Delphine

  • Google
  • 1
  • 3
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Mechanical, electrochemical and structural characteristics of friction stir spot welds of aluminium alloy 606316citations

Places of action

Chart of shared publication
Akinlabi, Esther Titilayo
1 / 235 shared
Nyembwe, Kasongo Didier
1 / 2 shared
Ikumapayi, Omolayo Michael
1 / 5 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Akinlabi, Esther Titilayo
  • Nyembwe, Kasongo Didier
  • Ikumapayi, Omolayo Michael
OrganizationsLocationPeople

article

Mechanical, electrochemical and structural characteristics of friction stir spot welds of aluminium alloy 6063

  • Akinlabi, Esther Titilayo
  • Nyembwe, Kasongo Didier
  • Ikumapayi, Omolayo Michael
  • Mulaba-Kapinga, Delphine
Abstract

<p>The work presents the friction stir spot welding (FSSW) of AA6063. The evolving properties due to the influence of process parameters and the efficacy of metallurgical, structural, mechanical, and electrochemical integrities were studied. FSSW was conducted on 2mm thickness by varying the rotational speed of 600, 900 and 1200 rpm and the dwell time at 10 and 15 s. The evolving microstructures, hardness, corrosion, shear tensile behaviours and X-ray diffraction characteristics of the as-received material and the welds were studied. As the tool rotational speed increased at a constant dwell time, a smooth and debris free spot welds were noticed, more HAZ formations became visible and more intermetallic phases of aluminium magnesium (AlMg) were formed although with very low peaks during structural assessment. Furthermore, the hardness values increased up to a certain limit and then decreased, the corrosion properties in artificial seawater (ASW) shown significant improvement on the spot-welded samples and the tensile shear strength was also improved. It would be recommended that spot welds at 900 rpm and 10 and/or 15 s for applications where the hardness is significant imperative and at 1200 rpm with 10 and/or 15 s dwell time where higher tensile shear strength is required and lastly, 1200 rpm at 15 s where corrosion application is significant.</p>

Topics
  • impedance spectroscopy
  • microstructure
  • corrosion
  • phase
  • x-ray diffraction
  • Magnesium
  • Magnesium
  • aluminium
  • strength
  • aluminium alloy
  • hardness
  • intermetallic