People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
May, Abdelghani
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Numerical analysis of an experimental ballistic test of Al/SiC functionally graded materialscitations
- 2024Mechanical behavior and microstructure of dissimilar aluminium/titanium rotary friction weld jointscitations
- 2024Mechanical behavior and microstructure of dissimilar aluminium/titanium rotary friction weld jointscitations
- 2023Cyclic behavior of AA2024 aluminum alloy under different loading paths and heat treatmentscitations
- 2023Optimization of the RFW Process Parameters by Using the Taguchi Method for the Ti6Al4V grade-5 alloycitations
- 2022Microstructural and Mechanical Characterization of Chromium Coating Deposed on Carbon Fiberscitations
Places of action
Organizations | Location | People |
---|
article
Mechanical behavior and microstructure of dissimilar aluminium/titanium rotary friction weld joints
Abstract
<jats:p>The objective of this study is to employ the rotary friction welding (RFW) technique to join dissimilar materials AA2024/Ti6Al4V. The experimental design encompasses the manipulation of RFW process input parameters, using the Taguchi L9 array methodology. The collected data underwent thorough analysis, aimed at determining the ultimate tensile strength (UTS) of the resultant weld joint. The prime focus rested on ascertaining optimal RFW conditions that could effectively maximize the UTS. Through the use of statistical analysis of variance (ANOVA), the process parameter of utmost significance was identified. The outcomes of this investigation were harnessed to formulate regression model pertaining to the UTS of the RFW joint. Furthermore, fatigue tests were executed to exhibit the cyclic behavior of the dissimilar welds, yielding a comprehensive Wöhler curve that facilitated the estimation of specimen longevity under stress cycles. In addition, microscopic observations were carried out to discern the microstructural evolution and the quality of the weld joint. Finally, scanning electron microscopy (SEM) analysis was conducted to investigate damage micro-mechanisms specimens. The results show that using a rotational speed of 1290 rpm, friction pressure of 6 MPa for 6.3 s, and forging pressure of 6 MPa for 8 s leads to an improvement in the UTS value up to 424.31 MPa, corresponding to a joint efficiency of 90.46%.</jats:p>