People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Van Mullem, Tim
Ghent University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Comparative analysis of three different types of self-healing concrete via permeability testing and a quasi-steady-state chloride migration testcitations
- 2024Comparative analysis of three different types of self-healing concrete via permeability testing and a quasi-steady-state chloride migration testcitations
- 2023Bacteria-based self-healing concrete exposed to frost salt scalingcitations
- 2023Using neutron tomography to study the internal curing by superabsorbent polymers in cementitious materials
- 2023Influencing factors to the capillary water uptake of (un)cracked cementitious materialscitations
- 2023Influencing factors to the capillary water uptake of (un)cracked cementitious materialscitations
- 2022Preliminary investigation of the long-term deformations of self-healing concrete with superabsorbent polymers
- 2021An investigation of suitable healing agents for vascular-based self-healing in cementitious materialscitations
- 2021Evaluation of test methods for self-healing concrete with macrocapsules by inter-laboratory testing
- 2020Addressing the need for standardization of test methods for self-healing concrete : an inter-laboratory study on concrete with macrocapsulescitations
- 2020Addressing the need for standardization of test methods for self-healing concrete: an inter-laboratory study on concrete with macrocapsules.
- 2020Addressing the need for standardization of test methods for self-healing concrete: an inter-laboratory study on concrete with macrocapsulescitations
Places of action
Organizations | Location | People |
---|
document
Influencing factors to the capillary water uptake of (un)cracked cementitious materials
Abstract
Capillary water absorption tests are widely used in uncracked cementitious materials to assess the quality and durability. Due to the easy execution of the test, it is also frequently used to assess the self-healing efficiency of self-healing concrete and mortar. It is established that the presence of a crack significantly increases the water uptake by a specimen. However, it is not known how the crack width, healing agents and mix composition influence the capillary water absorption. In this research, for cylindrical mortar specimens with four different crack widths, both a capillary water absorption test and water permeability were test were executed in order to investigate the relation between these two test methods. After the first round of testing, cracked specimens were healed manually with polyurethane and methyl methacrylate and the capillary absorption test was performed again to investigate the sensitivity of the test method to different degrees of crack healing. Furthermore, prismatic specimens were cast to investigate the influence of crack creation and geometry. It was found that the crack width does not have an influence on the capillary absorption rate. However, the crack width has a significant influence on the water flow through the crack. As expected, manual healing with polyurethane is better in comparison to the sealing of the crack mouth with methyl methacrylate.