Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lohner, J.

  • Google
  • 1
  • 2
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022A long-term study on the effect of a hydrophobic treatment on the moisture balance and durability of a reinforced concrete structure in a road tunnelcitations

Places of action

Chart of shared publication
Büchler, M.
1 / 2 shared
Brem, M.
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Büchler, M.
  • Brem, M.
OrganizationsLocationPeople

article

A long-term study on the effect of a hydrophobic treatment on the moisture balance and durability of a reinforced concrete structure in a road tunnel

  • Lohner, J.
  • Büchler, M.
  • Brem, M.
Abstract

<jats:p>Concrete structures in the vicinity of seawater or deicing salts on roads in regions with cold climatic conditions, are exposed to chlorides. Transport of chlorides in concrete due to capillary suction during drying and wetting cycles as well as diffusion in combination with carbonation tends to result in corrosion of the rebar and loss of structural integrity. This damage mechanism mainly applies to directly weathered components. After a longer service life, however, components that are not directly exposed, such as concrete surfaces outside the spraying water area of a tunnel, are also affected. A long-term study over 12 years was performed to investigate the effect of hydrophobic treatment on the moisture balance and durability of a suspended tunnel ceiling compared to an untreated surface with the same exposure. Embedded sensors installed in the concrete structure and an online monitoring system were used to measure the electrical resistivity of the concrete and the corrosion rate of the steel reinforcement over time. Furthermore, the data obtained were combined with climate measurements in the tunnel to gain new insights on the effect of tunnel climate on the damage mechanism. The measurements allowed to prove the long-term effect and correct application of hydrophobic treatment. With these results it is possible to make a more precise estimation of the condition and the deterioration process of the tunnel ceiling and to optimize the rehabilitation schedule.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • corrosion
  • resistivity
  • steel
  • durability
  • drying