People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Markovsky, Pavlo
G.V. Kurdyumov Institute for Metal Physics
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Mechanical Energy Absorption Ability of Titanium-Based Porous Structures Produced by Various Powder Metallurgy Approachescitations
- 2021Mechanical Behavior of Titanium Based Metal Matrix Composites Reinforced with TiC or TiB Particles under Quasi-Static and High Strain-Rate Compressioncitations
- 2020Friction welding of conventional Ti-6Al-4V alloy with a Ti-6Al-4V based metal matrix composite reinforced by TiC
- 2020Electron Beam Cold Hearth Melted Titanium Alloys and the Possibility of Their Use as Anti-Ballistic Materialscitations
- 2020Structure and Properties of Layered Ti-6Al-4V-Based Materials Fabricated Using Blended Elemental Powder Metallurgycitations
- 2020Diffusion bonding of TiC or TiB reinforced Ti–6Al–4V matrix composites to conventional Ti–6Al–4V alloycitations
- 2018Thermo-Mechanical Treatment of Titanium Based Layered Structures Fabricated by Blended Elemental Powder Metallurgycitations
- 2018Mechanical Behavior of Titanium Alloys under Different Conditions of Loadingcitations
- 2010Application of Local Rapid Heat Treatment for Improvement of Microstructure and Mechanical Properties of Titanium Productscitations
Places of action
Organizations | Location | People |
---|
article
Electron Beam Cold Hearth Melted Titanium Alloys and the Possibility of Their Use as Anti-Ballistic Materials
Abstract
<jats:p>Three commercial titanium alloys: two-phase α+β Ti-6Al-4V (low alloyed), and T110 (Ti-5.5Al-1.5V-1.5Mo-4Nb-0.5Fe, higher-alloyed), and β-metastable Ti-1.5Al-6.8Mo-4.5Fe were melted using EBCHM approach in the form of 100 mm in diameter ingots with the weight of about 20 kg each. After 3D hot pressing at single β-field temperatures ingots were rolled at temperatures below β-transus onto plates with thickness varying from 3 mm to 25 mm. Different heat treatments, including annealing at α+β or β-field temperatures, and special strengthening Surface Rapid Heat Treatment (SRHT) which after final aging provided special gradient microstructure with a hardened surface layer over ductile basic core, were employed. Mechanical properties were studied with tensile and 3-point flexure tests. It was established that the best combination of tensile strength and ductility in all alloys studied was obtained after SRHT, whereas at 3-point flexure better characteristics were obtained for the materials annealed at temperatures of (α+β)-field. At the same time, ballistic tests made at a certified laboratory with different kinds of ammunition showed essential superiority of plates having upper layers strengthened with SRHT. The effect of microstructure of the alloys, plate thickness and type of used ammunition on ballistic resistance is discussed.</jats:p>