People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yoshida, Y.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2020Effect of microstructure on tensile properties of Ti-17 alloys forged using a 1500-ton forging simulatorcitations
- 2018Quantum Spin Liquids Unveil the Genuine Mott Statecitations
- 2016Structural and Chemical Analysis of the Zirconia-Veneering Ceramic Interfacecitations
- 2007Taylor cones of ionic liquids from capillary tubes as sources of pure ions: The role of surface tension and electrical conductivitycitations
- 2002Improved filler-matrix coupling in resin composites
- 2000Assessment of decontamination methods as pretreatment of silanization of composite glass fillers
Places of action
Organizations | Location | People |
---|
article
Effect of microstructure on tensile properties of Ti-17 alloys forged using a 1500-ton forging simulator
Abstract
<jats:p>Microstructure dependence on mechanical properties were investigated for Ti-17 forged at temperatures between 700 and 850 ˚C with deformation ratio from 33 to 80 %, and solutiontreated at 800˚C for 4 hours and aged at 620 ˚C for 8 hours. The microstructure was observed after solution and aging treatments. The volume fraction and the size of the primary alpha phase was controlled by solution treatment temperature, not forging temperature and deformation ratio. Forging temperature affected the morphology of grain boundary (GB) alpha phase. Deformation ratio affected the grain size and the aspect ratio of the horizontal and vertical grain size of the prior beta phase. The tensile strength was investigated at room temperature, 450, and 600 ˚C. Forging temperature and deformation ratio did not affect the tensile strength because there is no large difference of the volume fraction of the alphaphase. On the other hand, the elongation and the reduction of area increased with increase of the aspect ratio of the prior beta grains; that means, increase of the deformation ratio. Raising of forging temperature also increased elongation and reduction of area due to the film-like GB alphaphase.</jats:p>