Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Antti, M.-L.

  • Google
  • 1
  • 9
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Texture of electron beam melted Ti-6Al-4V measured with neutron diffraction6citations

Places of action

Chart of shared publication
Zhang, J.
1 / 62 shared
Neikter, M.
1 / 1 shared
Strobl, M.
1 / 11 shared
Åkerfeldt, Pia
1 / 21 shared
Persson, M.
1 / 7 shared
Pederson, R.
1 / 2 shared
Durniak, C.
1 / 1 shared
Woracek, R.
1 / 5 shared
Vogel, S. C.
1 / 5 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Zhang, J.
  • Neikter, M.
  • Strobl, M.
  • Åkerfeldt, Pia
  • Persson, M.
  • Pederson, R.
  • Durniak, C.
  • Woracek, R.
  • Vogel, S. C.
OrganizationsLocationPeople

article

Texture of electron beam melted Ti-6Al-4V measured with neutron diffraction

  • Zhang, J.
  • Neikter, M.
  • Strobl, M.
  • Åkerfeldt, Pia
  • Antti, M.-L.
  • Persson, M.
  • Pederson, R.
  • Durniak, C.
  • Woracek, R.
  • Vogel, S. C.
Abstract

<jats:p>Texture in materials is important as it contributes to anisotropy in the bulk mechanical properties. Ti-6Al-4V built with the additive manufacturing process (AM) electron beam melting (EBM) has been found to have anisotropic mechanical properties. Therefore, this work has been performed to investigate the texture variations of EBM built Ti-6Al-4V with neutron time of flight (TOF). For the work, samples were produced with different build geometries off-set by 90 degrees. A cast sample was additionally analyzed to investigate the bulk texture of conventionally manufactured material. Microstructural characterization was performed and the cast material was found to have a coarse colony α microstructure, whereas the EBM built material had a finer basket weave microstructure. Overall, the texture of the EBM built material was found to be weak having an multiple of random distribution (MRD) index of ~1 for the α phase, whilst the cast material possessed more than twice the amount of preferred orientation i.e. MRD 2.51 for the α phase.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • phase
  • anisotropic
  • neutron diffraction
  • texture
  • random
  • electron beam melting