Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nikas, Dimitrios

  • Google
  • 6
  • 9
  • 50

Karlstad University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2024Experimental Investigations in the Processing of AISI H11 Powder Blends Enriched with Tungsten Carbide Nanoparticles for the Additive Manufacturing of Tailored Hot Working Tools in the Directed Energy Deposition (DED-LB/M)—Impact of Tungsten Carbide Nanoparticles on Microstructural and Mechanical Characteristicscitations
  • 2023Processing of Carbon Nanoparticle-Enriched AISI H11 Tool Steel Powder Mixtures in DED-LB/M for the AM of Forging Tools with Tailored Properties (Part II): Influence of Nanoscale Carbon Additives on Microstructure and Mechanical Properties3citations
  • 2022Effect of annealing on microstructure in railway wheel steel2citations
  • 2019High temperature bi-axial low cycle fatigue behaviour of railway wheel steel1citations
  • 2018Evaluation of local strength via microstructural quantification in a pearlitic rail steel deformed by simultaneous compression and torsion44citations
  • 2014Characterization of electrically insulating coatings for soft magnetic composite materials by means of surface sensitive analytical techniquescitations

Places of action

Chart of shared publication
Schmidt, Michael
2 / 53 shared
Kohlstruck, Jan
2 / 3 shared
Wittmann, Alexander
1 / 4 shared
Vetter, Johannes
1 / 5 shared
Hentschel, Oliver
2 / 6 shared
Krakhmalev, Pavel
2 / 24 shared
Zhang, Yubin
1 / 46 shared
Ahlström, Johan
2 / 5 shared
Zhang, Xiaodan
1 / 11 shared
Chart of publication period
2024
2023
2022
2019
2018
2014

Co-Authors (by relevance)

  • Schmidt, Michael
  • Kohlstruck, Jan
  • Wittmann, Alexander
  • Vetter, Johannes
  • Hentschel, Oliver
  • Krakhmalev, Pavel
  • Zhang, Yubin
  • Ahlström, Johan
  • Zhang, Xiaodan
OrganizationsLocationPeople

article

High temperature bi-axial low cycle fatigue behaviour of railway wheel steel

  • Nikas, Dimitrios
Abstract

<jats:p>One of the most important aspects in railway operation is the interaction between rail and wheel. Railway wheels are commonly made from medium carbon steels (∼ 0.55 wt.% C), heat treated to a near pearlitic microstructure with some 5–10% pro-eutectoid ferrite. During the operation of freight trains, where block brakes are used, high thermal loads are evolved because of recurring braking and occasional slippage. Thus the combination of mechanical and thermal loads leads to changes in the mechanical properties of the material. The focus of the current investigation is to evaluate the mechanical behaviour of wheel material (UIC ER7T) subjected to non-proportional biaxial fatigue loading, as this simulates the actual working conditions in a better way than uniaxial loading. Axial-torsional low cycle fatigue tests were performed at room temperature and elevated temperatures using thin walled specimens to study the cyclic stress-strain properties of this material. The results showed large influence of temperature on the ratcheting behaviour of the material. Biaxial non-proportional loading gave much higher strain hardening as compared to uniaxial loading. Hardening due to dynamic strain ageing can be seen in the biaxial tests at temperatures around 300°C.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • Carbon
  • steel
  • fatigue
  • aging