People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rossi, Emanuele
ETH Zurich
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Chloride-induced corrosion of steel in concrete—insights from bimodal neutron and X-ray microtomography combined with ex-situ microscopycitations
- 2024Chloride-induced corrosion of steel in concrete—insights from bimodal neutron and X-ray microtomography combined with ex-situ microscopycitations
- 2022Influence of self-healing induced by polylactic-acid and alkanoates-derivates precursors on transport properties and chloride penetration resistance of sound and cracked mortar specimenscitations
- 2021Freeze-thaw resistance and air-void analysis of concrete with recycled glass-pozzolan using X-ray micro-tomographycitations
- 2021A study of the elastic moduli and chemical composition of corrosion product naturally-generated due to chlorides through nano-indentation and energy dispersive X-ray spectrometry (EDS)
- 2021Analysis of naturally-generated corrosion products due to chlorides in 20-year old reinforced concretecitations
- 2021Assessment of the self-healing capacity of cementitious materials through active thin sectionscitations
- 2021Accelerated carbonation of ordinary Portland cement paste and its effects on microstructure and transport properties
- 2021Assessment of freeze-thaw resistance of cement based concrete with ground glass – pozzolan through X-ray microtomography
- 2020The influence of defects at the steel/concrete interface for chloride-induced pitting corrosion of naturally-deteriorated 20-years-old specimens studied through X-ray Computed Tomographycitations
- 2020Encapsulation Techniques and Test Methods of Evaluating the Bacteria-Based Self-Healing Efficiency of Concrete : A Literature Reviewcitations
- 2019On The Role Of Soft Inclusions On The Fracture Behaviour Of Cement Pastecitations
- 2019The influence of defects at the steel/concrete interface for pitting corrosion initiation studied through X-ray Computed Tomography and image analysiscitations
Places of action
Organizations | Location | People |
---|
article
The influence of defects at the steel/concrete interface for pitting corrosion initiation studied through X-ray Computed Tomography and image analysis
Abstract
Although corrosion of reinforcement is a well-known issue for the construction industry, there are still open questions about some fundamentals of corrosion in reinforced concrete. These points include, among others, which are the most sensitive locations of the steel/concrete interface for pitting corrosion to initiate and to propagate. In this study, X-ray computed tomography (CT-scan) is used to characterize eight 20-years-old reinforced concrete cores naturally deteriorated due to chloride-induced corrosion. The volume loss due to corrosion of the reinforcement was quantified through image analysis of CT-scans. The volume loss of the steel was found to be higher for steel rebars embedded in Portland cement specimens rather than in blended cement specimens. Furthermore, CT-scans revealed that the deepest and most frequent corrosion pits, as well as the consequent highest volume loss of steel, were present at the portion of the reinforcement closer to the outdoor environment and in proximity to air voids at the steel/concrete interface. As a consequence, the highest decrease of structural performance of the rebars would be likely localized at those locations. Therefore, the presence of interfacial air voids should be considered as relevant factor when assessing the risk of corrosion of reinforced concrete structures. ; Materials and Environment