People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Aigner, Roman
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2020Areal fatigue strength assessment of cast aluminium surface layerscitations
- 2019On the mean stress sensitivity of cast aluminium considering imperfectionscitations
- 2019Numerical Fatigue Analysis of Induction-Hardened and Mechanically Post-Treated Steel Componentscitations
- 2019Characterising the fatigue strength of aluminium castings by applied statistical evaluation of imperfections
- 2019On the Statistical Size Effect of Cast Aluminiumcitations
- 2019Short and long crack growth of aluminium cast alloyscitations
- 2018Application of a area -Approach for Fatigue Assessment of Cast Aluminum Alloys at Elevated Temperaturecitations
- 2018Local fatigue strength assessment of induction hardened components based on numerical manufacturing process simulationcitations
- 2018Lifetime assessment of cast aluminium components based on CT-evaluated microstructural defects
- 2018Fatigue strength characterization of Al-Si cast material incorporating statistical size effectcitations
- 2018Modification of a Defect-Based Fatigue Assessment Model for Al-Si-Cu Cast Alloyscitations
- 2016Aufbau einer numerischen Simulationskette für induktionsgehärtete Randschichten
Places of action
Organizations | Location | People |
---|
article
Fatigue strength characterization of Al-Si cast material incorporating statistical size effect
Abstract
Cast aluminium components may exhibit material imperfections such as shrinkage and gas pores, or oxide inclusions. Therefore, the fatigue resistance is significantly influenced by the size and location of these inhomogenities. In this work, two different specimen geometries are manufactured from varying positions of an Al-Si-Cu alloy casting. The specimen geometries are designed by means of shape optimization based on a finite element analysis and exhibit different highly-stressed volumes. The numerically optimized specimen curvature enforces a notch factor of only two percent. To enable the evaluation of a statistical size effect, the length of the constant testing region and hence, the size of the highly-stressed volume varies by a ratio of one to ten between the two specimen geometries. Furthermore, the location of the crack initiation is dominated by the comparably greatest defects in this highly-stressed volume, which is also known as Weibull’s weakest link model. The crack initiating defect sizes are evaluated by means of light microscopy and modern scanning electron microscope methods. Finally, the statistical size effect is analysed based on the extreme value distribution of the occurring defects, whereby the size and location of the pores is non-destructively obtained by computed tomography (CT) scanning. This elaborated procedure facilitates a size-effect based methodology to study the defect distribution and the associated local fatigue life of CPS casted Al-Si lightweight components.