People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Roslan, Mohd Nazrul
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2021Analysis of Sandwich Core Fiber Composite Subjected to Different Skin Reinforcement Materials
- 2020Physical and Mechanical Characterization of Kenaf Fiber Filament Wound Composite Produced Using Vacuum-Bagging and Heat-Shrink Tube Methodcitations
- 2019Axial impact crushing behaviour of thin-walled braided composite tubes: experimental comparison on basalt fibre and glass fibre reinforcementcitations
- 2018Energy absorption performance of braided basalt reinforced composite tubes under axial loads
- 2016Ballistic Impact Response of Woven Hybrid Coir/Kevlar Laminated Compositescitations
- 2014Impact of alkali treatment conditions on kenaf fiber polyester composite tensile strengthcitations
- 2013Influence of Woven and Cross-ply Laminates on Mechanical Properties of Coir Epoxy Compositecitations
- 2013Modelling Analysis on Mechanical Damage of Kenaf Reinforced Composite Plates under Oblique Impact Loadingscitations
- 2013Mercerization Treatment Conditions Effects on Kenaf Fiber Bundles Mean Diameter Variabilitycitations
- 2011Mechanical Properties Evaluation of Woven Coir and Kevlar Reinforced Epoxy Compositescitations
Places of action
Organizations | Location | People |
---|
article
Ballistic Impact Response of Woven Hybrid Coir/Kevlar Laminated Composites
Abstract
The effects of different laminated hybrid composites stacking configuration subjected to ballistic impact were investigated. The hybrid composites consist of woven coir (C) and woven Kevlar (K) layers laminated together. The samples of woven coir were prepared using handloom device. The composites were produced by stacking the laminated woven coir and Kevlar alternately with the presence of the binder. The samples were tested under ballistic impact with different stacking configuration. The results obtained had successfully achieved the National Institute of Justice (NIJ) standard level IIA with energy absorption of 435.6 kJ and 412.2 kJ under the projectile speed of between 330 m/s and 321 m/s respectively. Samples that having Kevlar layer at the front face and woven coir layer as back face achieved partial penetration during projectile impact. This orientation is proven to have good impact energy absorption and able to stop projectile at the second panel of the composites.