People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zerbo, Bienlo Flora Christine
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Elaboration of wide bandgap CIGS on silicon by electrodeposition of stacked metal precursors and sulfur annealing for tandem solar cell applications
Abstract
International audience ; A method was developed for the electrodeposition of Cu-In-Ga precursor layers to elaborate Cu(In,Ga)(S,Se) 2 (CIGS) thin films on silicon substrates for future application as silicon/wide-gap CIGS tandem solar cells. An underlayer of Ag was first deposited on silicon substrates to ensure a good adhesion of the electrodeposited stack and to serve as cathode during the deposition process. Cu, In and Ga layers were then sequentially electrodeposited. Ag-Cu-In-Ga precursor layers were finally subjected to elemental sulfur annealing at 600°C. Formation of compact and adherent AgCIGS is observed. X ray diffraction and photoluminescence analyses confirm the formation of wide-gap CIGS of about 1.6 eV, with a spontaneous gallium grading over the depth of the sample leading to the formation of a bi-layer structure with a gallium rich layer at the interface with silicon.