People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Slepička, Petr
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2023Biopolymer Honeycomb Microstructures: A Reviewcitations
- 2023Exploring morphological diversity of Q-carbon structures through laser energy density variationcitations
- 2022Antibacterial Properties of Silver Nanoclusters with Carbon Support on Flexible Polymercitations
- 2022The multi-energetic Au ion implantation of graphene oxide and polymerscitations
- 2022KrF Laser and Plasma Exposure of PDMS–Carbon Composite and Its Antibacterial Propertiescitations
- 2022Mammalian Cell Interaction with Periodic Surface Nanostructurescitations
- 2022Carbon Transformation Induced by High Energy Excimer Treatmentcitations
- 2020Cellulose acetate honeycomb-like pattern created by improved phase separationcitations
Places of action
Organizations | Location | People |
---|
article
The multi-energetic Au ion implantation of graphene oxide and polymers
Abstract
<jats:p>The electric properties of polymers are increasingly important in a wide range of applications such as sensors, energy storages, microelectronics, and filtration membranes among others. In this work, the effect of multi-energetic Au ion implantation on the graphene oxide (GO), polyimide (PI), polyethylene terephthalate (PET) and polylactide (PLLA) elemental, chemical, structural end electric properties is presented with potential application in 3D metal-dielectric structure synthetization. The three energies, 3.2, 1.6, 0.8 MeV of Au ions with fluence 3.75×10<jats:sup>14</jats:sup> cm<jats:sup>-2</jats:sup> were used in ascending or descending order to create two sample sets, which were subsequently analysed by RBS, ERDA, EDS and AFM. RBS analysis was used for Au-depth profile characterization in the implanted samples, the profiles agree reasonably with those simulated by SRIM code. Electrical properties were investigated by standard two-point technique with respect to the used parameters of the ion irradiation. The sheet resistance decreases after ion irradiation and it is evident that the ascending order of ion implantation energies has more significant effect on the conductivity enhancement compare to the descending one.</jats:p>