Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Malinsky, Petr

  • Google
  • 5
  • 30
  • 14

Czech Academy of Sciences

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Patterning of COC Polymers by Middle‐Energy Ion Beams for Selective Cell Adhesion in Microfluidic Devices1citations
  • 2024Insulator Material Deposited with Molybdenum Disulphide Prospective for Sensing Applicationcitations
  • 2022Compositional and Structural Modifications by Ion Beam in Graphene Oxide for Radiation Detection Studies5citations
  • 2022Compositional and Structural Modifications by Ion Beam in Graphene Oxide for Radiation Detection Studies5citations
  • 2022The multi-energetic Au ion implantation of graphene oxide and polymers3citations

Places of action

Chart of shared publication
Aubrecht, Petr
1 / 1 shared
Smejkal, Jiří
1 / 1 shared
Luxa, Jan
1 / 12 shared
Stofik, Marcel
2 / 2 shared
Novák, Josef
2 / 3 shared
Mackova, Anna
4 / 10 shared
Matoušek, Jindřich
1 / 3 shared
Maly, Jan
2 / 2 shared
Jagerová, Adéla
1 / 4 shared
Liegertová, Michaela
1 / 1 shared
Cutroneo, Mariapompea
3 / 4 shared
Novak, Josef
1 / 2 shared
Torrisi, Lorenzo
2 / 23 shared
Slepicka, Petr
3 / 3 shared
Silipigni, Letteria
2 / 8 shared
Michalcova, Alena
2 / 3 shared
Noga, Pavol
2 / 7 shared
Dobrovodsky, Jozef
2 / 2 shared
Havranek, Vladimir
2 / 3 shared
Fajstavr, Dominik
2 / 8 shared
Andò, Lucio
2 / 2 shared
Lavrentiev, Vasily
2 / 5 shared
Holy, Vaclav
2 / 5 shared
Torrisi, Alfio
1 / 1 shared
Švorčík, Václav
1 / 12 shared
Szőkölová, Kateřina
1 / 1 shared
Sofer, Zdeněk
1 / 20 shared
Marvan, Petr
1 / 3 shared
Štěpanovská, Eva
1 / 1 shared
Slepička, Petr
1 / 8 shared
Chart of publication period
2024
2022

Co-Authors (by relevance)

  • Aubrecht, Petr
  • Smejkal, Jiří
  • Luxa, Jan
  • Stofik, Marcel
  • Novák, Josef
  • Mackova, Anna
  • Matoušek, Jindřich
  • Maly, Jan
  • Jagerová, Adéla
  • Liegertová, Michaela
  • Cutroneo, Mariapompea
  • Novak, Josef
  • Torrisi, Lorenzo
  • Slepicka, Petr
  • Silipigni, Letteria
  • Michalcova, Alena
  • Noga, Pavol
  • Dobrovodsky, Jozef
  • Havranek, Vladimir
  • Fajstavr, Dominik
  • Andò, Lucio
  • Lavrentiev, Vasily
  • Holy, Vaclav
  • Torrisi, Alfio
  • Švorčík, Václav
  • Szőkölová, Kateřina
  • Sofer, Zdeněk
  • Marvan, Petr
  • Štěpanovská, Eva
  • Slepička, Petr
OrganizationsLocationPeople

article

The multi-energetic Au ion implantation of graphene oxide and polymers

  • Švorčík, Václav
  • Malinsky, Petr
  • Szőkölová, Kateřina
  • Novák, Josef
  • Mackova, Anna
  • Sofer, Zdeněk
  • Marvan, Petr
  • Štěpanovská, Eva
  • Slepička, Petr
Abstract

<jats:p>The electric properties of polymers are increasingly important in a wide range of applications such as sensors, energy storages, microelectronics, and filtration membranes among others. In this work, the effect of multi-energetic Au ion implantation on the graphene oxide (GO), polyimide (PI), polyethylene terephthalate (PET) and polylactide (PLLA) elemental, chemical, structural end electric properties is presented with potential application in 3D metal-dielectric structure synthetization. The three energies, 3.2, 1.6, 0.8 MeV of Au ions with fluence 3.75×10<jats:sup>14</jats:sup> cm<jats:sup>-2</jats:sup> were used in ascending or descending order to create two sample sets, which were subsequently analysed by RBS, ERDA, EDS and AFM. RBS analysis was used for Au-depth profile characterization in the implanted samples, the profiles agree reasonably with those simulated by SRIM code. Electrical properties were investigated by standard two-point technique with respect to the used parameters of the ion irradiation. The sheet resistance decreases after ion irradiation and it is evident that the ascending order of ion implantation energies has more significant effect on the conductivity enhancement compare to the descending one.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • atomic force microscopy
  • Energy-dispersive X-ray spectroscopy
  • Rutherford backscattering spectrometry