Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jagerová, Adéla

  • Google
  • 4
  • 25
  • 30

Jan Evangelista Purkyně University in Ústí nad Labem

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Patterning of COC Polymers by Middle‐Energy Ion Beams for Selective Cell Adhesion in Microfluidic Devices1citations
  • 2022Combined Au/Ag nanoparticle creation in ZnO nanopillars by ion implantation for optical response modulation and photocatalysis ; ENEngelskEnglishCombined Au/Ag nanoparticle creation in ZnO nanopillars by ion implantation for optical response modulation and photocatalysis16citations
  • 2022The synthesis of Au-NPs by ion implantation in the crystalline GaN and characterisation of their optical properties2citations
  • 2020Creation of Gold Nanoparticles in ZnO by Ion Implantation–DFT and Experimental Studies11citations

Places of action

Chart of shared publication
Aubrecht, Petr
1 / 1 shared
Smejkal, Jiří
1 / 1 shared
Malinsky, Petr
1 / 5 shared
Luxa, Jan
1 / 12 shared
Stofik, Marcel
1 / 2 shared
Novák, Josef
1 / 3 shared
Mackova, Anna
1 / 10 shared
Matoušek, Jindřich
1 / 3 shared
Maly, Jan
1 / 2 shared
Liegertová, Michaela
1 / 1 shared
Macková, Anna
2 / 3 shared
Holý, Václav
1 / 4 shared
Poustka, David
1 / 1 shared
Mikšová, Romana
1 / 2 shared
Lalik, Ondrej
1 / 1 shared
Mistrík, Jan
1 / 5 shared
Galeckas, Augustinas
1 / 10 shared
Kentsch, Ulrich
1 / 7 shared
Marvan, Petr
1 / 3 shared
Schutter, Jan David
1 / 2 shared
Azarov, Alexander
1 / 20 shared
Flaks, Josef
1 / 1 shared
Michalcová, Alena
1 / 14 shared
Sofer, Zdeněk
1 / 20 shared
Vronka, Marek
1 / 4 shared
Chart of publication period
2024
2022
2020

Co-Authors (by relevance)

  • Aubrecht, Petr
  • Smejkal, Jiří
  • Malinsky, Petr
  • Luxa, Jan
  • Stofik, Marcel
  • Novák, Josef
  • Mackova, Anna
  • Matoušek, Jindřich
  • Maly, Jan
  • Liegertová, Michaela
  • Macková, Anna
  • Holý, Václav
  • Poustka, David
  • Mikšová, Romana
  • Lalik, Ondrej
  • Mistrík, Jan
  • Galeckas, Augustinas
  • Kentsch, Ulrich
  • Marvan, Petr
  • Schutter, Jan David
  • Azarov, Alexander
  • Flaks, Josef
  • Michalcová, Alena
  • Sofer, Zdeněk
  • Vronka, Marek
OrganizationsLocationPeople

article

The synthesis of Au-NPs by ion implantation in the crystalline GaN and characterisation of their optical properties

  • Macková, Anna
  • Flaks, Josef
  • Michalcová, Alena
  • Sofer, Zdeněk
  • Vronka, Marek
  • Jagerová, Adéla
Abstract

<jats:p>Nanostructured surfaces with embedded noble metal nanoparticles is an attractive way for manipulation with the optical properties of wide bandgap semiconductors applied in optoelectronics, photocatalytic processes or for Surface-Enhanced Raman spectroscopy. Ion implantation offers an effective way for nanoparticle preparation without the use of additional chemicals that offers precise control of nanoparticle depth distribution. The aim of this study is a synthesis of the gold nanoparticles in GaN by implantation of 1.85 MeV Au ions with high fluences up to 7×10<jats:sup>16</jats:sup> cm<jats:sup>-2</jats:sup> and study of optical properties of Au implanted GaN. Implanted crystals were annealed at 800 °C in an ammonia atmosphere for 20 min to support Au nanoparticle creation and GaN recovery. The structure characterisation has been realized by Rutherford backscattering spectroscopy in channelling mode and it showed the formation of two separated disordered regions – the surface region and buried layer. The lower implantation fluences induce damage mainly in a buried layer; however, the increase of the Au-ion fluence leads to the increase of surface disorder as well. Further, the increase of the Au-ion fluence induces the Au dopant shift to the surface and multimodal Audepth profiles. TEM analyses confirmed the formation of Au nanoparticles in the implanted samples after annealing with sizes up to 14 nm. The increase of light absorption and modification of GaN bandgap of the Au modified GaN was deduced from the change in optical transmission spectra between 370 – 1400 nm.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • surface
  • semiconductor
  • gold
  • transmission electron microscopy
  • annealing
  • Raman spectroscopy