People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Neale, Geoffrey
Cranfield University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024An evaluation of large diameter through-thickness metallic pins in compositescitations
- 2022Insertion of large diameter through-thickness metallic pins in compositescitations
- 2021Experimental Investigations of 3D Woven Layer to-Layer Carbon/Epoxy Composites at Different Strain Ratescitations
- 2021Experimental Investigations of 3D Woven Layer to-Layer Carbon/Epoxy Composites at Different Strain Ratescitations
- 2021Influence of Binder Float Length on the Out-of-Plane and Axial Impact Performance of 3D Woven Compositescitations
- 2020Improved crush energy absorption in 3D woven composites by pick density modificationcitations
- 2019Influence of Textile Architecture on the Mechanical Properties of 3D Woven Carbon Composites
- 2019Comparative studies of structure property relationship between glass/epoxy and carbon/epoxy 3D woven composites
- 2019Energy Absorption Mechanisms in Layer-to-Layer 3D Woven Composites
- 2019Improved Energy Absorption in 3D Woven Composites by Weave Parameter Manipulationcitations
Places of action
Organizations | Location | People |
---|
article
Experimental Investigations of 3D Woven Layer to-Layer Carbon/Epoxy Composites at Different Strain Rates
Abstract
<jats:p>This paper reports experimental investigations of 3D woven carbon/epoxy composites on quasi-static and dynamic tensile properties in the longitudinal (warp) and transverse (weft) directions. Firstly, quasi-static tests were conducted to determine a baseline tensile strength and to find out the adequate specimen geometry required for dynamic testing. Secondly, dynamic tensile properties at intermediate strain rates (nominal strain rates from 0.1 to 200 s<jats:sup>-1</jats:sup>) were investigated alongside the corresponding failure mechanisms. Detailed information on failure patterns is obtained with strain field measurements from Digital Image Correlation (DIC) and CT scans. The results show that 3D woven composites are strain rate insensitive and the crack initiation is located near weft yarns and binding interlacement points due to the presence of resin rich areas.</jats:p>