Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nia, Borhan Arghavani

  • Google
  • 1
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Calculation of structural, electronic, magnetic and optical properties of C3N monolayer substituted with magnesiumcitations

Places of action

Chart of shared publication
Cholaki, Erfan
1 / 1 shared
Parsamehr, Sajad
1 / 1 shared
Rezaee, Sahar
1 / 4 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Cholaki, Erfan
  • Parsamehr, Sajad
  • Rezaee, Sahar
OrganizationsLocationPeople

article

Calculation of structural, electronic, magnetic and optical properties of C3N monolayer substituted with magnesium

  • Cholaki, Erfan
  • Parsamehr, Sajad
  • Rezaee, Sahar
  • Nia, Borhan Arghavani
Abstract

<jats:p>In this article, Mg impurity effect on structural, electronic, magnetic and optical properties ofC3N monolayer have been investigated using first principles calculations in the density functional theory framework utilizing Wien2K computational code. The results provide that the impurity added to the C3N monolayer changes the nature of the C3N monolayer to create magnetic half-metallic properties with 0.99 magnetization.By investigating the mechanical stability of these two structures, it is observed that the pure C3N structure is more stable than the Mg-doped structure.Moreover, optical properties such as dielectric function, reflection coefficient, energy loss function, absorption coefficient and optical conductivity were calculated. The pure C3N monolayer and the C3N with Mg impurity are both optically anisotropic, leading to birefringence for the pure and doped states. The results also provide a basic understanding of the design of composite structures applied in nanodevices based on two-dimensional advanced materials which is used in the spintronics industry</jats:p>

Topics
  • density
  • impedance spectroscopy
  • theory
  • Magnesium
  • Magnesium
  • anisotropic
  • composite
  • density functional theory
  • two-dimensional
  • magnetization