People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bendounan, Azzedine
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Dirac Fermions in Blue Phosphorene Monolayercitations
- 2023Dirac Fermions in Blue Phosphorene Monolayercitations
- 2023First steps of silicene growth on an insulating thin-film: effect of the substrate temperature
- 2023First steps of silicene growth on an insulating thin-film: effect of the substrate temperature
- 2021MoS2/PPy Nanocomposite as a Transducer for Electrochemical Aptasensor of Ampicillin in River Water
- 2021MoS2/PPy Nanocomposite as a Transducer for Electrochemical Aptasensor of Ampicillin in River Watercitations
- 2021Electron beam analysis induces Cl vacancy defects in a NaCl thin filmcitations
- 2020Evidence of new 2D material: Cu<sub>2</sub>Tecitations
- 2020Phosphorus Pentamers: Floating Nanoflowers form a 2D Networkcitations
- 2020Single-layer graphene on epitaxial FeRh thin filmscitations
- 2020Phase transition and thermal stability of epitaxial PtSe 2 nanolayer on Pt(111)citations
- 2020Evidence of new 2D material: Cu 2 Tecitations
- 2017Giant Rashba effect at the topological surface of PrGe revealing antiferromagnetic spintronicscitations
- 2016Case studies on the formation of chalcogenide self-assembled monolayers on surfaces and dissociative processescitations
- 2012Monitoring the formation of interface-confined mixture by photoelectron spectroscopycitations
Places of action
Organizations | Location | People |
---|
article
First steps of silicene growth on an insulating thin-film: effect of the substrate temperature
Abstract
Silicene is a two-dimensional (2D) material with very promising electronic properties for applications in silicon modern technology. However, the first experimental synthesis of silicene on metallic surfaces shows strong interactions between the silicene and its substrate, which can alter its electronic properties. Here, we report on the first steps of silicene growth on an insulating surface (NaCl) using scanning tunneling microscopy (STM), low energy electron diffraction (LEED), Auger electron spectroscopy (AES), and angle-resolved photoemission spectroscopy (ARPES). We demonstrate the importance of temperature annealing in the growth of silicene on NaCl. Indeed, after deposition of silicon on the NaCl/Ag(110) surface, we observe the following stages: (i) at room temperature, the silicon atoms accumulate on top of the NaCl layer without any given order. (ii) At 60 °C, silicon dimers start to grow on the NaCl. (iii) At 140 °C, these dimers form a 2D silicon chains on the surface. (iv) After a post-annealing at 200 °C, evident 2D silicon nanoribbons with a honeycomb-like structure were observed. Our results of the first silicene growth stages on an insulating surface are a necessary step for exploring its growth mechanism further.