Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bouiri, El Mahdi

  • Google
  • 1
  • 9
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Improving dielectric properties of composites thin films with polylactic acid and PZT microparticles induced by interfacial polarization10citations

Places of action

Chart of shared publication
Eddiai, Adil
1 / 6 shared
Farhan, Rida
1 / 5 shared
Mazroui, Mhammed
1 / 6 shared
Meddad, Mounir
1 / 6 shared
Cherkaoui, Omar
1 / 13 shared
Denktas, Cenk
1 / 1 shared
Omari, Lhaj El Hachemi
1 / 5 shared
Chakhchaoui, Nabil
1 / 10 shared
Oumghar, Khadija
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Eddiai, Adil
  • Farhan, Rida
  • Mazroui, Mhammed
  • Meddad, Mounir
  • Cherkaoui, Omar
  • Denktas, Cenk
  • Omari, Lhaj El Hachemi
  • Chakhchaoui, Nabil
  • Oumghar, Khadija
OrganizationsLocationPeople

article

Improving dielectric properties of composites thin films with polylactic acid and PZT microparticles induced by interfacial polarization

  • Eddiai, Adil
  • Farhan, Rida
  • Mazroui, Mhammed
  • Meddad, Mounir
  • Cherkaoui, Omar
  • Denktas, Cenk
  • Omari, Lhaj El Hachemi
  • Chakhchaoui, Nabil
  • Oumghar, Khadija
  • Bouiri, El Mahdi
Abstract

<jats:p>Although polylactic acid (PLA) is widely identified as a biodegradable polymer, its use is limited due to the inherently poor mechanical properties. Therefore, the strengthening of PLA with microscale particles like lead zirconate titanate (PZT) is a promising field of research that has only just begun to be explored. Piezoelectric polymer-PZT films are encouraging materials for modern technological applications in energy harvesting. The PLA/PZT composites were developed using the solvent casting technique. The mechanical characteristics and dielectric properties of the considered films were investigated. X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR), Spectroscopy and Scanning Electron Microscopy (SEM) were used, respectively, to examine the influence of these fillers at the molecular level, crystal structure change and micro charges dispersion inside the polymer matrix. Thermogravimetric Analysis (TGA) was used to examine the stability and thermal degradation of the films. The effect of the content (0.1–1 wt.%) of PZT on these properties has also been studied. The results indicate that the addition of PZT content induces considerable improvement in the β-phase and dielectric constant of microcomposites films compared to that of pure PLA.</jats:p>

Topics
  • impedance spectroscopy
  • dispersion
  • polymer
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • thin film
  • dielectric constant
  • composite
  • thermogravimetry
  • solvent casting
  • casting
  • interfacial