People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nkhaili, Lahcen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2022Effect of annealing time on different properties of the next generation Cu<sub>2</sub>Ni<sub>0.50</sub>Co<sub>0.50</sub>SnS<sub>4</sub>Thin filmscitations
- 2021Effect of RF Sputtering Power and Deposition Time on Optical and Electrical Properties of Indium Tin Oxide Thin Filmcitations
- 2017FTIR and Raman study of rapid thermal annealing and oxidation effects on structural properties of silicon-rich Si x C 1-x thin films deposited by R.F co-sputteringcitations
Places of action
Organizations | Location | People |
---|
article
Effect of annealing time on different properties of the next generation Cu<sub>2</sub>Ni<sub>0.50</sub>Co<sub>0.50</sub>SnS<sub>4</sub>Thin films
Abstract
<jats:p>In this report, the Multifunctional Quinary Cu<jats:sub>2</jats:sub>Ni<jats:sub>0.50</jats:sub>Co<jats:sub>0.50</jats:sub>SnS<jats:sub>4</jats:sub> synthesized by a cheap and easy-to-use technique using spin-coating on glass substrates. XRD spectra of Cu<jats:sub>2</jats:sub>Ni<jats:sub>0.50</jats:sub>Co<jats:sub>0.50</jats:sub>SnS<jats:sub>4</jats:sub> annealing at 300 °C demonstrated the structure similar to that of Cu<jats:sub>2</jats:sub>NiSnS<jats:sub>4</jats:sub> and Cu<jats:sub>2</jats:sub>CoSnS<jats:sub>4</jats:sub> for 60 min and 90 min. The Raman scattering demonstrated the existence of Raman Cu<jats:sub>2</jats:sub>Ni<jats:sub>0.50</jats:sub>Co<jats:sub>0.50</jats:sub>SnS<jats:sub>4</jats:sub> peaks positioned at 286 and 331 cm<jats:sup>−1</jats:sup> which allows us to tell the structure of Cu<jats:sub>2</jats:sub>Ni<jats:sub>0.50</jats:sub>Co<jats:sub>0.50</jats:sub>SnS<jats:sub>4</jats:sub> similar only to Cu<jats:sub>2</jats:sub>NiSnS<jats:sub>4</jats:sub>. The EDS studies demonstrated a quasi-stoichiometry of the Cu<jats:sub>2</jats:sub>Ni<jats:sub>0.50</jats:sub>Co<jats:sub>0.50</jats:sub>SnS<jats:sub>4</jats:sub> annealed sample with a low effect of annealing time on stoichiometry. The scanning electron microscope showed nearly uniform, dense and rough surface morphology with some voids. UV-visible-NIR spectroscopy revealed the gap energy of Cu<jats:sub>2</jats:sub>Ni<jats:sub>0.50</jats:sub>Co<jats:sub>0.50</jats:sub>SnS<jats:sub>4</jats:sub> absorbent layers annealed at 300 °C for 60 min is 1.38 eV, which is very close to the optimal value of the solar spectrum signed by Shockley-Queisser. These results are ideally suited for low-cost, soil-abundant and non-toxic materials for photovoltaic applications.</jats:p>