People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hussain, I.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2020A promising laser nitriding method for the design of next generation orthopaedic implants: Cytotoxicity and antibacterial performance of titanium nitride (TiN) wear nano-particles, and enhanced wear properties of laser-nitrided Ti6Al4V surfacescitations
- 2019Thermal, Mechanical and Optical Properties of TiO2-doped Sodium Silicate Glass-Ceramics
- 2017Multinuclear (Sn/Pd) complexes with disodium 2,2′-(dithiocarboxyazanediyl)diacetate hydrate; Synthesis, characterization and biological activitiescitations
- 2016Matrix-bound nanochemical possibilitiescitations
- 2016Surface functional polymers by post-polymerization modification using diarylcarbenes: introduction, release and regeneration of hydrogen peroxide and bactericidal activity.citations
- 2013In situ reaction kinetic analysis of dental restorative materialscitations
- 2011Zinc oxide nanorods/polymer hybrid heterojunctions for white light emitting diodescitations
Places of action
Organizations | Location | People |
---|
article
In situ reaction kinetic analysis of dental restorative materials
Abstract
The objective of this study was to evaluate in situ structural and thermal changes of dental restorative materials at periodical time intervals. The commercial materials included zinc oxide eugenol (ZOE), zinc phosphate type I (ZnPO4), glass ionomer cement type II (GIC) and resin-based nano-composite (Filtek Z350 XT). These materials were processed according to manufacturer’s instructions. For the structural analysis Fourier transform infrared spectroscopy (FTIR) was used at high resolution. TGA was used to evaluate thermal weight-loss. The FTIR spectra were collected at periodic time intervals. FTIR spectra showed that with time passing all materials exhibited an increase in peak intensities and a new appearance of shoulders and shifting of peaks for example, ZnPO4 (P-O), ZOE (C=O, C=N, C-O-C), GIC (COO−, C-H, Si-OH), composites (C=O, C=C, C=N, C-N-H). The peaks were replaced by bands and these bands became broader with time interval. Composites showed a degree of conversion and new peaks corresponded to the cross-linking of polymer composites. TGA analysis showed that significant changes in weight loss of set materials were observed after 24 h, where ZOE showed continuous changes in thermal degradation. The spectral changes and thermal degradation with time interval elucidated in situ setting behaviour and understanding of their bonding compatibility with tooth structure and change in relation to time. © EDP Sciences 2013.