Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Younas, B.

  • Google
  • 1
  • 5
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013In situ reaction kinetic analysis of dental restorative materials14citations

Places of action

Chart of shared publication
Muzaffar, D.
1 / 1 shared
Rehman, Ihtesham Ur
1 / 71 shared
Chaudhry, A. A.
1 / 10 shared
Khan, A. S.
1 / 19 shared
Hussain, I.
1 / 7 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Muzaffar, D.
  • Rehman, Ihtesham Ur
  • Chaudhry, A. A.
  • Khan, A. S.
  • Hussain, I.
OrganizationsLocationPeople

article

In situ reaction kinetic analysis of dental restorative materials

  • Muzaffar, D.
  • Rehman, Ihtesham Ur
  • Chaudhry, A. A.
  • Khan, A. S.
  • Younas, B.
  • Hussain, I.
Abstract

The objective of this study was to evaluate in situ structural and thermal changes of dental restorative materials at periodical time intervals. The commercial materials included zinc oxide eugenol (ZOE), zinc phosphate type I (ZnPO4), glass ionomer cement type II (GIC) and resin-based nano-composite (Filtek Z350 XT). These materials were processed according to manufacturer’s instructions. For the structural analysis Fourier transform infrared spectroscopy (FTIR) was used at high resolution. TGA was used to evaluate thermal weight-loss. The FTIR spectra were collected at periodic time intervals. FTIR spectra showed that with time passing all materials exhibited an increase in peak intensities and a new appearance of shoulders and shifting of peaks for example, ZnPO4 (P-O), ZOE (C=O, C=N, C-O-C), GIC (COO−, C-H, Si-OH), composites (C=O, C=C, C=N, C-N-H). The peaks were replaced by bands and these bands became broader with time interval. Composites showed a degree of conversion and new peaks corresponded to the cross-linking of polymer composites. TGA analysis showed that significant changes in weight loss of set materials were observed after 24 h, where ZOE showed continuous changes in thermal degradation. The spectral changes and thermal degradation with time interval elucidated in situ setting behaviour and understanding of their bonding compatibility with tooth structure and change in relation to time. © EDP Sciences 2013.

Topics
  • polymer
  • zinc
  • glass
  • glass
  • composite
  • cement
  • thermogravimetry
  • resin
  • Fourier transform infrared spectroscopy