People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ibraim, Erdin
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024An evaluation of non-linear undrained behaviour in the moderate strain range for fine-grained soilscitations
- 2024Comparison of simple stress-strain models in the moderate strain range for fine-grained soils:A reviewcitations
- 2024Comparison of simple stress-strain models in the moderate strain range for fine-grained soilscitations
- 2021Stiffness of granular soils under long-term multiaxial cyclic loadingcitations
- 20213D FE-informed laboratory soil testing for the design of offshore wind turbine monopilescitations
- 2021Stiffness of artificially cemented sands:insight on characterisation through empirical power relationshipscitations
- 2021Stiffness of artificially cemented sandscitations
- 2019Strength anisotropy of fibre-reinforced sands under multiaxial loadingcitations
- 2019Stiffness of lightly cemented sand under multiaxial loadingcitations
- 2019Stiffness of lightly cemented sand under multiaxial loadingcitations
- 2019Effect of orientation of principal stress axes on cyclic liquefaction potential of soils
- 2019Effect of orientation of principal stress axes on cyclic liquefaction potential of soils
- 2018Compacted Chalk Putty-Cement Blends:Mechanical Properties and Performancecitations
- 2018Compacted Chalk Putty-Cement Blendscitations
- 2017General Report:
- 2017Particle soil crushing: passive detection and interpretation
- 2017Evolution of elastic properties of granular soils under very large of number of multiaxial stress cycles
- 2016Evolution of small strain stiffness of granular soils with a large number of small loading cycles in the 3-D multiaxial stress space
- 2015Quantitative assessment of the influence of surface roughness on soil stiffnesscitations
- 2014Micromechanics of seismic wave propagation in granular materialscitations
- 2013Experimental and numerical assessment of a cubical sample produced by pluviationcitations
- 2012Characterization of artificial spherical particles for DEM validation studiescitations
- 2012Characterization of artificial spherical particles for DEM validation studiescitations
- 2012Characterization of artificial, spherical sized particles for DEM validation studies ; Characterization of artificial spherical particles for DEM validation studiescitations
- 2010Static liquefaction of fibre reinforced sand under monotonic loadingcitations
- 2009Failure resistant soils for geotechnical infrastructure
Places of action
Organizations | Location | People |
---|
article
Comparison of simple stress-strain models in the moderate strain range for fine-grained soils
Abstract
The prediction of stress-strain behaviour in soils is a problem that can be approached in different ways depending on the design scenario. In some cases, a multi-parameter constitutive model calibrated with non-routine soil tests may be appropriate, for example, where a model has been developed for the relevant soil at a building site subject to complex loading. However, simple characteristic parameters are desirable for examining the variability of soil behaviour especially at regional scales. This paper describes a method of assessing the suitability of simple models for simulating non-linear undrained soil stress-strain behaviour in the moderate strain range. The moderate strain range is defined by a soil strength mobilisation of 20% to 80%. Three simple stress-strain models are compared. A published database of reconstituted triaxial tests is used to evaluate the three models with selected statistical tools that quantify errors associated with the simple model approximation of the relationship between stress and strain. The paper discusses the value of computing the model error and the trade off to make between introducing a greater number of parameters (and tests) for model precision and limiting the complexity of the variability characterisation.