Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Otsubo, Masahide

  • Google
  • 1
  • 2
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Sensitivity of G0 and stress-strain relation of geomaterials to grain shape and surface roughnesscitations

Places of action

Chart of shared publication
Kuwano, Reiko
1 / 1 shared
Li, Yang
1 / 24 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Kuwano, Reiko
  • Li, Yang
OrganizationsLocationPeople

article

Sensitivity of G0 and stress-strain relation of geomaterials to grain shape and surface roughness

  • Otsubo, Masahide
  • Kuwano, Reiko
  • Li, Yang
Abstract

<jats:p>It is empirically known that the packing property and mechanical responses of cohesionless granular materials are influenced by grain shape. For example, the attainable range of void ratio depends on grain shape; angular materials tend to exhibit greater friction angles. Besides, shear wave velocity (<jats:italic>V<jats:sub>s</jats:sub></jats:italic> ) and small-strain shear modulus (<jats:italic>G<jats:sub>0</jats:sub></jats:italic> ) of sphere assemblies are affected by surface roughness. However, consensus has yet to be reached on the combined effect of grain shape and surface roughness on <jats:italic>G<jats:sub>0</jats:sub></jats:italic> and stress-strain relation. This contribution aims to evaluate the shape-roughness combined effect on the strain-dependent mechanical responses of granular materials. Three groups of glass beads having different grain shapes and a silica sand were used, and their grain surfaces were roughened through a systematic procedure using a milling machine. In total, eight materials were subjected to triaxial compression after measurement of <jats:italic>V<jats:sub>s</jats:sub></jats:italic>. The experimental results reveal that the stress-strain relation of angular particles is remarkably affected by the surface roughness, whereas the roughness effect on the stress-dependent variation in <jats:italic>G<jats:sub>0</jats:sub></jats:italic> is limited for angular particles.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • grain
  • grinding
  • glass
  • glass
  • milling
  • void