People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chen, Jiang
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Integrated Experimental Phase Equilibria and Thermodynamic Modelling Research and Implementation in support of progress of process pyrometallurgy towards sustainability
- 2024Phase equilibria in the ZnO-MgO-SiO2 and PbO-ZnO-MgO-SiO2 systems for characterizing MgO-based refractory – slag interactionscitations
- 2023Experimental Study and Thermodynamic Modelling of Equilibrium Distributions of Ni, Sn and Zn Between Slag and Black Copper for E-Scrap Recycling Applicationscitations
- 2023Integrated Experimental Phase Equilibria and Thermodynamic Modelling Research and Implementation in Support of Sustainable Pyrometallurgical Processingcitations
- 2021Investigation of the thermodynamic stability of C(A, F)3 solid solution in the FeO-Fe2O3-CaO-Al2O3 System and SFCA Phase in the FeO-Fe2O3-CaO-SiO2-Al2O3 Systemcitations
- 2019A Phase Equilibrium of the Iron-rich Corner of the CaO–FeO–Fe2O3–SiO2 System in Air and the Determination of the SFC Primary Phase Fieldcitations
- 2019Experimental investigation and thermodynamic modeling of the distributions of Ag and Au between slag, matte, and metal in the Cu–Fe–O–S–Si systemcitations
- 2019Distributions of Ag, Bi, and Sb as minor elements between iron-silicate slag and copper in equilibrium with tridymite in the Cu-Fe-O-Si system at T = 1250 °C and 1300 °C (1523 K and 1573 K)citations
- 2019Combined experimental and thermodynamic modelling investigation of the distribution of antimony and tin between phases in the Cu-Fe-O-S-Si systemcitations
- 2019Factors influencing the microstructures of iron ore sinterscitations
- 2019Effect of Gas Atmosphere on the Phase Chemistry in the CaO-FeO-Fe2O3-SiO2 System Related to Iron Ore Sinter-makingcitations
- 2019Integrated experimental study and thermodynamic modelling of the distribution of arsenic between phases in the Cu-Fe-O-S-Si systemcitations
- 2017Experimental and modelling research in support of energy savings and improved productivity in non-ferrous metal production and recycling
- 2016Phase equilibria study of the CaO-“Fe2O3”-SiO2 system in air to support iron sintering process optimisationcitations
- 2015Experimental investigation and thermodynamic modeling of the (NiO + CaO + SiO2), (NiO + CaO + MgO) and (NiO + CaO + MgO + SiO2) systemscitations
- 2013Experimental study and thermodynamic modeling of the MgO–NiO–SiO2 systemcitations
- 2012Experimental study and thermodynamic optimization of the CaO-NiO, MgO-NiO and NiO-SiO2 systemscitations
- 2012Development of NiO-CaO-MgO-SiO2 thermodynamic database using experimental and thermodynamic modelling approaches with focus on NiO-MgO-SiO2 and NiO-CaO-SiO2 systems
Places of action
Organizations | Location | People |
---|
article
Integrated Experimental Phase Equilibria and Thermodynamic Modelling Research and Implementation in support of progress of process pyrometallurgy towards sustainability
Abstract
Responding to the many sustainability challenges facing the metallurgical industry, we report progress that has been made on the development of predictive tools that can be applied to a wide range of technologies. The aim is to provide accurate, fundamentally-based thermodynamic tools that can be used by industry to improve process efficiencies, metal recoveries and productivities, and reduce energy requirements of pyrometallurgical systems. The program involves an integrated experimental and thermodynamic modelling research on phase equilibria in complex multi-component, multi-phase gas-slag-matte-speiss-metal-solids system with the Cu2O-PbO-ZnO-FeO-Fe2O3-CaO-Al2O3-MgO-SiO2-S major and As-Sn-Sb-Bi-Ag-Au-Ni-Co-Cr-Na minor elements. The experiments involve high temperature equilibration in controlled gas atmospheres, rapid quenching and direct measurement of equilibrium phase compositions with quantitative microanalytical techniques, including electron probe X-ray microanalysis and Laser Ablation ICP-MS. The thermodynamic modelling is undertaken using FactSage software package with advanced thermodynamic solution models. The continuing development of analytical and research methodologies has resulted in significant advances in predictive capability. Implementation of the results of fundamental studies involves ongoing collaboration of researchers and industry technologists, and the provision of advanced professional training. An overview of recent progress in research, implementation and applications in industrial practice will be presented in the paper.