Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ramasamy, Devarajan

  • Google
  • 2
  • 9
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Energizing the Thermal Conductivity and Optical Performance of Salt Hydrate Phase Change Material Using Copper (II) Oxide Nano Additives for Sustainable Thermal Energy Storage4citations
  • 2019Mechanical behavior of selective laser melting-produced metallic biomaterials11citations

Places of action

Chart of shared publication
Suraparaju, Subbarama Kousik
1 / 1 shared
Namasivayam, Satesh
1 / 1 shared
Kadirgama, Kumaran
2 / 3 shared
Samykano, Mahendran
2 / 4 shared
Rajkumar, K.
1 / 5 shared
Sofiah, A. G. N.
1 / 2 shared
Ahmad, Iswadi
1 / 1 shared
Moradi, Mahmoud
1 / 83 shared
Harun, Wan Sharuzi Wan
1 / 1 shared
Chart of publication period
2024
2019

Co-Authors (by relevance)

  • Suraparaju, Subbarama Kousik
  • Namasivayam, Satesh
  • Kadirgama, Kumaran
  • Samykano, Mahendran
  • Rajkumar, K.
  • Sofiah, A. G. N.
  • Ahmad, Iswadi
  • Moradi, Mahmoud
  • Harun, Wan Sharuzi Wan
OrganizationsLocationPeople

article

Energizing the Thermal Conductivity and Optical Performance of Salt Hydrate Phase Change Material Using Copper (II) Oxide Nano Additives for Sustainable Thermal Energy Storage

  • Suraparaju, Subbarama Kousik
  • Ramasamy, Devarajan
  • Namasivayam, Satesh
  • Kadirgama, Kumaran
  • Samykano, Mahendran
  • Rajkumar, K.
  • Sofiah, A. G. N.
Abstract

<jats:p>Due to intermittent nature of solar energy, scientists and researchers are working to develop thermal energy storage (TES) systems for effectively use the solar energy. One promising avenue involves utilizing phase change materials (PCMs), but primary challenge lies in their limited thermal conductivity, which results in slower heat transfer rate and lower thermal energy storage density. The present research work demonstrates, to develop and explore a PCM composite by embedding salt hydrate and coper (II) oxide to enhance the heat transfer mechanism for potential utilization of TES material. The optical behavior, and thermal conductivity were analyzed by using Ultraviolet visible spectrum, and thermal property analyzer. The developed copper oxide dispersed PCM composite displayed the thermal conductivity was energized up to 71.5 % without affecting the other properties. Also, the optical absorptance was remarkably enhanced and the transmittance reduced to 87 %. Increasing the concentration of copper oxide nanoparticles in the salt hydrate PCM improves the optical absorptivity and heat conductivity. With these extraordinary abilities the nanocomposite could play a significant role in progress of sustainable TES with significance to contribute towards sustainable development goal of affordable and clean energy and climate change.</jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • density
  • phase
  • copper
  • thermal conductivity