Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kumar, R. Reji

  • Google
  • 1
  • 7
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Thermal energy storage behaviour of form-stable polyethylene glycol/MWCNT- based phase change materials2citations

Places of action

Chart of shared publication
Kadirgama, K.
1 / 3 shared
Kalidasan, B.
1 / 5 shared
Yadav, Aman
1 / 2 shared
Pandey, A. K.
1 / 13 shared
Ngui, W. K.
1 / 1 shared
Sofiah, A. G. N.
1 / 2 shared
Samykano, M.
1 / 5 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Kadirgama, K.
  • Kalidasan, B.
  • Yadav, Aman
  • Pandey, A. K.
  • Ngui, W. K.
  • Sofiah, A. G. N.
  • Samykano, M.
OrganizationsLocationPeople

document

Thermal energy storage behaviour of form-stable polyethylene glycol/MWCNT- based phase change materials

  • Kadirgama, K.
  • Kalidasan, B.
  • Yadav, Aman
  • Pandey, A. K.
  • Kumar, R. Reji
  • Ngui, W. K.
  • Sofiah, A. G. N.
  • Samykano, M.
Abstract

<jats:p>Organic phase change materials (OPCMs) possess a remarkable ability to absorb and release latent heat during phase transitions, making them very promising for storing solar energy. Nevertheless, the extensive use of these materials encounters substantial obstacles arising from intrinsic difficulties, such as limited heat conductivity and chemical stability concerns. The authors of this innovative work have successfully led the way in developing a state-of-the-art nano-enhanced organic phase change material (Ne-OPCM). This novel substance utilizes polyethylene glycol (PEG) as the primary phase transition material, which is smoothly incorporated into a network of polymethyl methacrylate (PMMA) to reduce obstacles caused by molecular size and improve chemical durability. In order to overcome the issue of poor thermal conductivity, the researchers selectively used multi-walled carbon nanotubes (MWCNT) as a conductive filler. This resulted in a significant increase in the thermal conductivity of PEG-1000. In an ongoing study, thermal characteristics of the developed (Ne-OPCM) composites are evaluated for different weight fractions of 0.3 %, 0.7 %, and 1.0 % of MWCNT. In addition to the morphology, thermal property, chemical stability, optical absorptivity and the latent heat of the developed PEG-PMMA/MWCNT (Ne-OPCM) composite are evaluated using FESEM, FT-IR, UV-Vis spectroscopy TGA and DSC instruments. The thermal conductivity of PEG-PMMA/MWCNT (Ne-OPCM) composite was improved by 87.64 % with a dispersion of 0.7 wt% of MWCNT. The DSC conducted highest latent heat and melting point of a PEG-PMMA/MWCNT (NePCM) composite are 139.66 J/g &amp; 40.4 °C occurring at 0.7 wt% of MWCNT. Consequently, the developed (Ne-OPCM) composites have promising potential in practical solar energy storage applications at the temperature range of 35-40 °C.</jats:p>

Topics
  • impedance spectroscopy
  • dispersion
  • Carbon
  • phase
  • nanotube
  • composite
  • chemical stability
  • phase transition
  • thermogravimetry
  • differential scanning calorimetry
  • durability
  • thermal conductivity
  • Ultraviolet–visible spectroscopy