Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dhaduti, Madhumati S.

  • Google
  • 1
  • 5
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Implementation of Cement-based nano composite Energy Absorption Damper to improve the damping properties of concrete and monitoring applications3citations

Places of action

Chart of shared publication
Roopa, A. K.
1 / 3 shared
Umarfarooq, M. A.
1 / 6 shared
Hunashyal, A. M.
1 / 3 shared
Mathad, S. N.
1 / 4 shared
Jalgar, Sandhya R.
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Roopa, A. K.
  • Umarfarooq, M. A.
  • Hunashyal, A. M.
  • Mathad, S. N.
  • Jalgar, Sandhya R.
OrganizationsLocationPeople

article

Implementation of Cement-based nano composite Energy Absorption Damper to improve the damping properties of concrete and monitoring applications

  • Roopa, A. K.
  • Umarfarooq, M. A.
  • Dhaduti, Madhumati S.
  • Hunashyal, A. M.
  • Mathad, S. N.
  • Jalgar, Sandhya R.
Abstract

<jats:p>The energy from the moving seismic waves through a building structure is dispersed by means of dampers. Dampers work by converting the kinetic energy into heat energy, dissipating it into the hydraulic fluid. Damper systems are designed and manufactured to protect structural integrity, reduce structural damage, and prevent injury to people by absorbing energy from earthquakes and minimizing structural deformations. The most effective way to achieve good vibration damping is by tailoring the construction materials such as cement with nanomaterials like Silica, Alumina, Graphene, CNTs, etc. This paper focuses on developing a vibration damper, prepared by cement nanocomposite containing MWCNTs and Carbon fibers. The tests, such as the Impact, Flexural, and Compressive strength tests, are conducted to investigate their energy-absorbing capacity, strength, and durability. The microstructural analysis SEM is performed to know the morphology of concrete mix with MWCNTs and Carbon fibers on damping mechanism. Impact test results indicate that the beams without MWCNTs and CFs exhibited an average energy absorption of 248 J, while those with MWCNTs and CFs absorbed an average energy of 262 J which shows almost 15% more energy absorption. Adding nanomaterials in a cement matrix improves concrete’s frictional damping energy consumption ability and increases structures’ energy-absorbing properties, flexural strength, and compressive strength.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • morphology
  • Carbon
  • scanning electron microscopy
  • strength
  • cement
  • flexural strength
  • impact test
  • durability