People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ziyamukhamedova, Umida
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023Fabrication and characterization of RF magnetron sputtered composite MoS<sub>2</sub> and ZrN coatings on Ti<sub>3</sub>SiC<sub>2</sub> max phase for space applications
- 2023Investigation of corrosion properties of box boring din 20MnCr5 steel bars
- 2023Additive manufacturing of bionanomaterials for biomedical applications based on TI6AL4V and PLA: a systematic review
- 2021Optimization of the composition and properties of heterocomposite materials for coatings obtained by the activation-heliotechnological methodcitations
- 2019Structure and Properties of Heterocomposite Polymeric Materials and Coatings from them Obtained by Heliotechnological Methodcitations
Places of action
Organizations | Location | People |
---|
article
Additive manufacturing of bionanomaterials for biomedical applications based on TI6AL4V and PLA: a systematic review
Abstract
<jats:p>Additive manufacturing (AM) is the owner of a huge potential as a manufacturing technology in fabricating functional implants, and scaffolds for biomedical applications. AM, which includes 3D printing (3DP) and 3D bioprinting, can be the solution to produce several needs such as scaffolds/implants, tissue or organs, or medical devices by combining different biomaterials with nanomaterials. Titanium and its alloys and Polylactic acid (PLA) are commonly used in bone tissue repair with their superior bio-functionality. The rapid advancement of three-dimensional (3D) printing technology has enabled the fabrication of porous titanium and polymer composite scaffolds with controllable microstructures, which is regarded as an effective method for promoting rapid bone repair. An electronic literature search was conducted in PubMed, Web of Science, Scopus, Elsevier, Embase, and other numerous databases up to December 2021 which are accessed by Karabuk university. To evaluate the possibility of bias and methodological quality, the SYRCLE tool and the last version of the CAMARADES list were used, respectively, a meta-analysis could not be performed. This systematic review is aimed to evaluate the common biomedical potential of 3D-printed porous Ti6Al4V (Ti64) and PLA matrix scaffold for repairing bone defects to investigate the influential factors that might affect its osteogenic availability. The most ideal parameters for designing the Ti64 scaffold were found to be a pore size of around 300-400 m and porosity of 60-70%, while PLA scaffolds show 350-400 m and nearly the same percentage in porosity as Ti64.</jats:p>