People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Seredyński, Mirosław
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2020On the anisotropy of thermal conductivity in ceramic brickscitations
- 2019The two-domain model of solute transport in binary alloy
- 2019Numerical study of crystal growth kinetics influence on prediction of different dendritic zones and macro-segregation in binary alloy solidificationcitations
- 2018The numerical investigation of the effective thermal conductivity of the carbon fiber reinforced epoxy composites manufactured by the vacuum bag method
- 2018Investigations on thermal anisotropy of ceramic bricks
- 2018Influence of crystal growth kinetics on prediction of macro segregation by micro-macroscopic simulation of binary alloy solidification
- 2015Front tracking method in modeling transport phenomena accompanying liquid–solid phase transition in binary alloys and semitransparent mediacitations
- 2015Tracking an envelope of columnar dendrites on an unstructured control volume grid
- 2015Micro-macro model for prediction of local temperature and concentration distribution in two-phase media
- 2014Micro-macro model for prediction of local temperature distribution in heterogeneous and two-phase media
- 2011Front Tracking Based Numerical Investigation of Relations Between Columnar Dendrites Permeability and Macrosegregation Evolution
- 2010Front Tracking Based Macroscopic Calculations of Columnar and Equiaxed Solidification of a Binary Alloycitations
Places of action
Organizations | Location | People |
---|
article
The two-domain model of solute transport in binary alloy
Abstract
A mixed model for micro-macroscopic computer simulation of binary alloy solidification is proposed. It involves a two-domain approach to solute conservation equations in the liquid and solid phases, whereas transport of momentum and energy in the two-phase region is modelled using the phase mixture theory. To distinguish regions of columnar and equiaxed crystal structures evolving in a cast during solidification, the special front tracking technique on non-structural triangular grids is included in the model. In this two-domain approach, solute conservation equations are averaged across solid and liquid phases, and the solute transport at the phase interface is included. Additionally, the microstructure evolution is modelled to capture the development of various complex grain structures and more accurately describe the solute transport between the phases. The accuracy of the proposed model is first verified by a grid refinement analysis, and then the model is used to predict the solute concentration and macro-segregation in the example problem of Pb-48%wt Sn alloy solidification in a 2D mould. The results obtained are next compared with the relevant ones predicted by the fully single-domain model, earlier developed by authors. Thus, the role of finite diffusion in liquid and solid phases is identified and discussed.