Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rouillé, Gaël

  • Google
  • 3
  • 12
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Water transport through mesoporous amorphous-carbon dustcitations
  • 2018Dust formation at cryogenic temperatures2citations
  • 2015Identification of vibrational excitations and optical transitions of the organic electron donor tetraphenyldibenzoperiflanthene (DBP)citations

Places of action

Chart of shared publication
Basalgète, R.
1 / 1 shared
Jäger, C.
1 / 6 shared
Krasnokutski, Serge A.
1 / 1 shared
Henning, Thomas
1 / 4 shared
Fulvio, Daniele
1 / 1 shared
Jäger, Cornelia
1 / 1 shared
Rink, Marcel
1 / 1 shared
Kröger, Jörg
1 / 3 shared
Gruenewald, Marco
1 / 7 shared
Kirchhuebel, Tino
1 / 1 shared
Forker, Roman
1 / 11 shared
Fritz, Torsten
1 / 15 shared
Chart of publication period
2024
2018
2015

Co-Authors (by relevance)

  • Basalgète, R.
  • Jäger, C.
  • Krasnokutski, Serge A.
  • Henning, Thomas
  • Fulvio, Daniele
  • Jäger, Cornelia
  • Rink, Marcel
  • Kröger, Jörg
  • Gruenewald, Marco
  • Kirchhuebel, Tino
  • Forker, Roman
  • Fritz, Torsten
OrganizationsLocationPeople

article

Water transport through mesoporous amorphous-carbon dust

  • Basalgète, R.
  • Rouillé, Gaël
  • Jäger, C.
Abstract

<jats:p>The diffusion of water molecules through mesoporous dust of amorphous carbon (a-C) is a key process in the evolution of prestellar, protostellar, and protoplanetary dust, as well as in that of comets. It also plays a role in the formation of planets. Given the absence of data on this process, we experimentally studied the isothermal diffusion of water molecules desorbing from water ice buried at the bottom of a mesoporous layer of aggregated a-C nanoparticles, a material analogous to protostellar and cometary dust. We used infrared spectroscopy to monitor diffusion in low temperature (160 to 170 K) and pressure (6 times10$^ $ to 8 times10$^ $ Pa) conditions. Fick's first law of diffusion allowed us to derive diffusivity values on the order of 10$^ $ cm$^2$ s$^ $, which we linked to Knudsen diffusion. Water vapor molecular fluxes ranged from 5 times1012 to 3 times1014 cm$^ $ s$^ $ for thicknesses of the ice-free porous layer ranging from 60 to 1900 nm. Assimilating the layers of nanoparticles to assemblies of spheres, we attributed to this cosmic dust analog of porosity 0.80--0.90 a geometry correction factor, similar to the tortuosity factor of tubular pore systems, between 0.94 and 2.85. Applying the method to ices and refractory particles of other compositions will provides us with other useful data.</jats:p>

Topics
  • nanoparticle
  • porous
  • impedance spectroscopy
  • pore
  • amorphous
  • Carbon
  • porosity
  • refractory
  • diffusivity
  • infrared spectroscopy
  • ion chromatography