Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fonfría, J. P.

  • Google
  • 2
  • 20
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Multifrequency high spectral resolution observations of HCN toward the circumstellar envelope of Y Canum Venaticorum10citations
  • 2019Circumstellar chemistry of Si-C bearing molecules in the C-rich AGB star IRC+102165citations

Places of action

Chart of shared publication
Dewitt, C. N.
1 / 1 shared
Richter, M. J.
1 / 1 shared
Lacy, J. H.
1 / 1 shared
Greathouse, T. K.
1 / 1 shared
Montiel, E. J.
1 / 2 shared
Agúndez, M.
2 / 2 shared
Massalkhi, Sarah
1 / 1 shared
Santander-García, M.
1 / 1 shared
Cernicharo, J.
2 / 3 shared
Martín-Gago, J. A.
1 / 1 shared
Young, K. H.
1 / 1 shared
Gottlieb, C. A.
1 / 1 shared
Sánchez Contreras, C.
1 / 1 shared
Patel, N. A.
1 / 1 shared
Marcelino, N.
1 / 1 shared
Mccarthy, M. C.
1 / 1 shared
Quintana-Lacaci, G.
1 / 1 shared
Joblin, C.
1 / 4 shared
Velilla-Prieto, L.
1 / 1 shared
Castro-Carrizo, Arancha
1 / 1 shared
Chart of publication period
2021
2019

Co-Authors (by relevance)

  • Dewitt, C. N.
  • Richter, M. J.
  • Lacy, J. H.
  • Greathouse, T. K.
  • Montiel, E. J.
  • Agúndez, M.
  • Massalkhi, Sarah
  • Santander-García, M.
  • Cernicharo, J.
  • Martín-Gago, J. A.
  • Young, K. H.
  • Gottlieb, C. A.
  • Sánchez Contreras, C.
  • Patel, N. A.
  • Marcelino, N.
  • Mccarthy, M. C.
  • Quintana-Lacaci, G.
  • Joblin, C.
  • Velilla-Prieto, L.
  • Castro-Carrizo, Arancha
OrganizationsLocationPeople

article

Multifrequency high spectral resolution observations of HCN toward the circumstellar envelope of Y Canum Venaticorum

  • Dewitt, C. N.
  • Richter, M. J.
  • Lacy, J. H.
  • Greathouse, T. K.
  • Montiel, E. J.
  • Agúndez, M.
  • Fonfría, J. P.
  • Massalkhi, Sarah
  • Santander-García, M.
  • Cernicharo, J.
Abstract

High spectral resolution observations toward the low mass-loss rate C-rich, J-type asymptotic giant branch (AGB) star Y CVn were carried out at 7.5, 13.1, and 14.0 μm with the Echelon-cross-echelle Spectrograph mounted on the Stratospheric Observatory for Infrared Astronomy and the Texas Echelon-cross-echelle Spectrograph on the Infrared Telescope Facility. Around 130 HCN and H<SUP>13</SUP>CN lines of bands ν<SUB>2</SUB>, 2ν<SUB>2</SUB>, 2ν<SUB>2</SUB> − ν<SUB>2</SUB>, 3ν<SUB>2</SUB> − 2ν<SUB>2</SUB>, 3ν<SUB>2</SUB> − ν<SUB>2</SUB>, and 4ν<SUB>2</SUB> − 2ν<SUB>2</SUB> were identified involving lower levels with energies up to ≃3900 K. These lines were complemented with the pure rotational lines J = 1−0 and 3-2 of the vibrational states up to 2ν<SUB>2</SUB> acquired with the Institut de Radioastronomie Millimétrique 30 m telescope, and with the continuum taken with Infrared Space Observatory. We analyzed the data in detail by means of a ro-vibrational diagram and with a code written to model the absorption and emission of the circumstellar envelope of an AGB star. The continuum is mostly produced by the star with a small contribution from dust grains comprising warm to hot SiC and cold amorphous carbon. The HCN abundance distribution seems to be anisotropic close to Y CVn and in the outer layers of its envelope. The ejected gas is accelerated up to the terminal velocity (≃8 km s<SUP>−1</SUP>) from the photosphere to ≃3R<SUB>⋆</SUB>, but there is evidence of higher velocities (≳9-10 km s<SUP>−1</SUP>) beyond this region. In the vicinity of the star, the line widths are as high as ≃10 km s<SUP>−1</SUP>, which implies a maximum turbulent velocity of 6 km s<SUP>−1</SUP> or the existence of other physical mechanisms probably related to matter ejection that involve higher gas expansion velocities than expected. HCN is rotationally and vibrationally out of local thermodynamic equilibrium throughout the whole envelope. It is surprising that a difference of about 1500 K in the rotational temperature at the photosphere is needed to explain the observations at 7.5 and 13-14 μm. Our analysis finds a total HCN column density that ranges from ≃2.1 × 10<SUP>18</SUP> to 3.5 × 10<SUP>18</SUP> cm<SUP>−2</SUP>, an abundance with respect to H<SUB>2</SUB> of 3.5 × 10<SUP>−5</SUP> to 1.3 × 10<SUP>−4</SUP>, and a <SUP>12</SUP>C/<SUP>13</SUP>C isotopic ratio of ≃2.5 throughout the whole envelope....

Topics
  • density
  • impedance spectroscopy
  • amorphous
  • Carbon
  • grain
  • anisotropic