Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Danger, Gregoire

  • Google
  • 5
  • 17
  • 276

Aix-Marseille University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2015Hydrogenation at low temperatures does not always lead to saturation: the case of HNCO73citations
  • 2014Formaldehyde chemistry in cometary ices: implication for the Rosetta missioncitations
  • 2013Importance of thermal reactivity for hexamethylenetetramine formation from simulated interstellar ices45citations
  • 2013The thermal reactivity of HCN and NH<SUB>3</SUB> in interstellar ice analogues65citations
  • 2012The desorption of H<SUB>2</SUB>CO from interstellar grains analogues93citations

Places of action

Chart of shared publication
Bassas, A.
1 / 1 shared
Bonnin, M.
1 / 1 shared
Dulieu, F.
2 / 3 shared
Noble, J. A.
3 / 3 shared
Chiavassa, T.
5 / 7 shared
Congiu, E.
2 / 2 shared
Theule, P.
4 / 4 shared
Duvernay, F.
5 / 7 shared
Rimola, A.
1 / 5 shared
Theulé, P.
1 / 4 shared
Fray, N.
1 / 3 shared
Cottin, H.
1 / 3 shared
Vinogradoff, V.
1 / 1 shared
Briani, G.
1 / 1 shared
Mispelaer, F.
2 / 4 shared
Chomat, M.
1 / 1 shared
Borget, F.
1 / 1 shared
Chart of publication period
2015
2014
2013
2012

Co-Authors (by relevance)

  • Bassas, A.
  • Bonnin, M.
  • Dulieu, F.
  • Noble, J. A.
  • Chiavassa, T.
  • Congiu, E.
  • Theule, P.
  • Duvernay, F.
  • Rimola, A.
  • Theulé, P.
  • Fray, N.
  • Cottin, H.
  • Vinogradoff, V.
  • Briani, G.
  • Mispelaer, F.
  • Chomat, M.
  • Borget, F.
OrganizationsLocationPeople

article

The desorption of H<SUB>2</SUB>CO from interstellar grains analogues

  • Dulieu, F.
  • Noble, J. A.
  • Mispelaer, F.
  • Danger, Gregoire
  • Chiavassa, T.
  • Congiu, E.
  • Theule, P.
  • Duvernay, F.
Abstract

Context. Much of the formaldehyde (H<SUB>2</SUB>CO) is formed from the hydrogenation of CO on interstellar dust grains, and is released in the gas phase in hot core regions. Radio-astronomical observations in these regions are directly related to its desorption from grains. <BR /> Aims: We study experimentally the thermal desorption of H<SUB>2</SUB>CO from bare silicate surfaces, from water ice surfaces and from bulk water ice in order to model its desorption from interstellar grains. <BR /> Methods: Temperature-programmed desorption experiments, monitored by mass spectrometry, and Fourier transform infrared spectroscopy are performed in the laboratory to determine the thermal desorption energies in: (i.) the multilayer regime where H<SUB>2</SUB>CO is bound to other H<SUB>2</SUB>CO molecules; (ii.) the submonolayer regime where H<SUB>2</SUB>CO is bound on top of a water ice surface; (iii.) the mixed submonolayer regime where H<SUB>2</SUB>CO is bound to a silicate surface; and (iv.) the multilayer regime in water ice, where H<SUB>2</SUB>CO is embedded within a H<SUB>2</SUB>O matrix. <BR /> Results: In the submonolayer regime, we find the zeroth-order desorption kinetic parameters ν<SUB>0</SUB> = 10<SUP>28</SUP> mol cm<SUP>-2</SUP> s<SUP>-1</SUP> and E = 31.0 +/-0.9 kJ mol<SUP>-1</SUP> for desorption from an olivine surface. The zeroth-order desorption kinetic parameters are ν<SUB>0</SUB> = 10<SUP>28</SUP> mol cm<SUP>-2</SUP> s<SUP>-1</SUP> and E = 27.1 +/-0.5 kJ mol<SUP>-1</SUP> for desorption from a water ice surface in the submonolayer regime. In a H<SUB>2</SUB>CO:H<SUB>2</SUB>O mixture, the desorption is in competition with the H<SUB>2</SUB>CO + H<SUB>2</SUB>O reaction, which produces polyoxymethylene, the polymer of H<SUB>2</SUB>CO. This polymerization reaction prevents the volcano desorption and co-desorption from happening. <BR /> Conclusions: H<SUB>2</SUB>CO is only desorbed from interstellar ices via a dominant sub-monolayer desorption process (E = 27.1 +/ - 0.5 kJ mol<SUP>-1</SUP>). The H<SUB>2</SUB>CO which has not desorbed during this sub-monolayer desorption polymerises upon reaction with H<SUB>2</SUB>O, and does not desorb as H<SUB>2</SUB>CO at higher temperature....

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • grain
  • experiment
  • mass spectrometry
  • gas phase
  • Fourier transform infrared spectroscopy
  • spectrometry
  • ion chromatography