Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mattsson, L.

  • Google
  • 3
  • 17
  • 91

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021Understanding the evolution and dust formation of carbon stars in the Large Magellanic Cloud via the JWST17citations
  • 2014The Herschel exploitation of local galaxy Andromeda (HELGA) - V. Strengthening the case for substantial interstellar grain growth35citations
  • 2011Dust-driven mass loss from carbon stars as a function of stellar parameters. II. Effects of grain size on wind properties39citations

Places of action

Chart of shared publication
García-Hernández, D. A.
1 / 7 shared
Dellagli, F.
1 / 2 shared
Tailo, M.
1 / 1 shared
Groenewegen, M. A. T.
1 / 13 shared
Dantona, F.
1 / 2 shared
Marini, E.
1 / 1 shared
Ventura, P.
1 / 2 shared
De Looze, I.
1 / 13 shared
Gentile, G.
1 / 5 shared
Baes, M.
1 / 12 shared
Spinoglio, Luigi
1 / 4 shared
Fritz, J.
1 / 1 shared
Gomez, H. L.
1 / 8 shared
Andersen, A. C.
1 / 1 shared
Smith, M. W. L.
1 / 6 shared
Viaene, S.
1 / 3 shared
Höfner, Susanne
1 / 5 shared
Chart of publication period
2021
2014
2011

Co-Authors (by relevance)

  • García-Hernández, D. A.
  • Dellagli, F.
  • Tailo, M.
  • Groenewegen, M. A. T.
  • Dantona, F.
  • Marini, E.
  • Ventura, P.
  • De Looze, I.
  • Gentile, G.
  • Baes, M.
  • Spinoglio, Luigi
  • Fritz, J.
  • Gomez, H. L.
  • Andersen, A. C.
  • Smith, M. W. L.
  • Viaene, S.
  • Höfner, Susanne
OrganizationsLocationPeople

article

Dust-driven mass loss from carbon stars as a function of stellar parameters. II. Effects of grain size on wind properties

  • Mattsson, L.
  • Höfner, Susanne
Abstract

Context. It is well established that the winds of carbon-rich AGB stars (carbon stars) can be driven by radiation pressure on grains of amorphous carbon and collisional transfer of momentum to the gas. This has been demonstrated convincingly by different numerical wind models that include time-dependent dust formation. To simplify the treatment of dust opacities, radiative cross sections are usually computed using the assumption that the dust grains are small compared to wavelengths around the stellar flux maximum. Considering the typical grain sizes that result from these models, however, the applicability of this small-particle limit (SPL) seems questionable. <BR /> Aims: We explore grain size effects on wind properties of carbon stars, using a generalized description of radiative cross sections valid for particles of arbitrary sizes. The purpose of the study is to investigate under which circumstances the SPL may give acceptable results, and to quantify the possible errors that may occur when the SPL does not hold. <BR /> Methods: The time-dependent description of grain growth in our detailed radiation-hydrodynamical models gives information about dust particle radii in every layer at every instant of time. Theses grain radii are used for computing opacities and determining the radiative acceleration of the dust-gas mixture. From the large number of models presented in the first paper of this series (based on SPL dust opacities) we selected two samples, i.e., a group of models with strong, well-developed outflows that are probably representative of the majority of wind-forming models, and another group, close to thresholds in stellar parameter space for dust-driven winds, which are referred to as critical cases. <BR /> Results: We show that in the critical cases the effect of the generalized description of dust opacities can be significant, resulting in more intense mass loss and higher wind velocities compared to models using SPL opacities. For well-developed winds, however, grain size effects on mass-loss rates and wind velocities are found to be small. Both groups of models tend towards lower degrees of dust condensation compared to corresponding SPL models, owing to a self-regulating feedback between grain growth and radiative acceleration. Consequently, the "dust-loss rates" are lower in the models with the generalized treatment of grain opacities. <BR /> Conclusions: We conclude that our previous results on mass-loss rates obtained with SPL opacities are reliable within a wide region of stellar parameter space, except for critical cases close to thresholds of dust-driven outflows where SPL models will tend to underestimate the mass-loss rates and wind velocities....

Topics
  • impedance spectroscopy
  • amorphous
  • Carbon
  • grain
  • grain size
  • forming
  • grain growth