Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Godard, Marie

  • Google
  • 10
  • 22
  • 162

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2022The 3.4 µm absorption band profile : comparison of aliphatic interstellar dust observations and laboratory analogues propertiescitations
  • 2017Swift heavy ion irradiation of interstellar dust analogues. Small carbonaceous species released by cosmic rays18citations
  • 2016Mantle formation, coagulation, and the origin of cloud/core shine. I. Modelling dust scattering and absorption in the infrared36citations
  • 2014Hydrogenated amorphous carbons : evolution of interstellar carbon dustcitations
  • 2012Effects of cosmic rays on hydrocarbon interstellar dust1citations
  • 2011Hydrogenated amorphous carbons: observations, synthesis and characterisation in laboratory of interstellar dustcitations
  • 2011Ion irradiation of carbonaceous interstellar analogues. Effects of cosmic rays on the 3.4 μm interstellar absorption band76citations
  • 2011The influence of cosmic rays on the 3.4 microns interstellar absorption bandcitations
  • 2010Photoluminescence of hydrogenated amorphous carbons: Wavelength-dependent yield and implications for the extended red emission31citations
  • 2009Hydrogenated amorphous carbons photoluminescence and astrophysical implications for the extended red emissioncitations

Places of action

Chart of shared publication
Dartois, Emmanuel
3 / 9 shared
Béroff, K.
1 / 3 shared
Chabot, M.
4 / 7 shared
Trautmann, C.
1 / 32 shared
Bender, M.
1 / 5 shared
Pino, T.
4 / 7 shared
Dartois, E.
5 / 15 shared
Severin, D.
1 / 8 shared
Ysard, N.
1 / 14 shared
Köhler, M.
1 / 10 shared
Gavilan, L.
1 / 4 shared
Jones, A. P.
1 / 12 shared
Duprat, J.
3 / 7 shared
Dhendecourt, L.
3 / 9 shared
Carpentier, Y.
2 / 3 shared
Brunetto, R.
3 / 11 shared
Engrand, C.
3 / 6 shared
Bréchignac, P.
2 / 3 shared
Féraud, G.
2 / 3 shared
Carpentier, Yvain
1 / 5 shared
Feraud, G.
1 / 1 shared
Brechignac, P.
1 / 1 shared
Chart of publication period
2022
2017
2016
2014
2012
2011
2010
2009

Co-Authors (by relevance)

  • Dartois, Emmanuel
  • Béroff, K.
  • Chabot, M.
  • Trautmann, C.
  • Bender, M.
  • Pino, T.
  • Dartois, E.
  • Severin, D.
  • Ysard, N.
  • Köhler, M.
  • Gavilan, L.
  • Jones, A. P.
  • Duprat, J.
  • Dhendecourt, L.
  • Carpentier, Y.
  • Brunetto, R.
  • Engrand, C.
  • Bréchignac, P.
  • Féraud, G.
  • Carpentier, Yvain
  • Feraud, G.
  • Brechignac, P.
OrganizationsLocationPeople

article

Photoluminescence of hydrogenated amorphous carbons: Wavelength-dependent yield and implications for the extended red emission

  • Godard, Marie
  • Dartois, Emmanuel
Abstract

No comment ; International audience ; Context. Hydrogenated amorphous carbons (a-C:H or HAC) have proved to be excellent analogs of interstellar dust observed in galaxies diffuse interstellar medium (DISM) through infrared vibrational absorption bands (3.4 μm, 6.8 μm, and 7.2 μm bands). They exhibit photoluminescence (PL) after excitation by UV-visible photons, and are possible carriers for the extended red emission (ERE), a broad red emission band observed in various interstellar environments. Aims. As many candidate materials/molecules can photoluminesce in the visible, along with the carrier abundance, the PL efficiency represents one of the strongest constraints set by such ERE observations. We wish to precisely characterize the PL behavior of a-C:H as a family of materials. Methods. The a-C:H samples are produced in the form of films deposited on substrates by plasma-enhanced chemical vapor deposition. The produced films were analyzed in transmission by UV-visible and IR spectroscopy, and the wavelength dependent PL spectra were recorded. The intrinsic absolute quantum yield η was then rigorously calculated taking self-absorption of the PL by the film and interfaces effects into account. Results. A wide range of different laboratory synthesized a-C:H were analyzed. Their PL properties are dependent on the optical gap Emathrm04: when Emathrm04 decreases from 4.3 eV to 2.8 eV, the a-C:H vary from highly (η ∼ 1%) yellow photoluminescent soft materials to hard materials that emit a wider PL band in the red spectral range, with a lower efficiency (η ∼ 0.01-0.1%). For any given a-C:H, the PL characteristics (central wavelength, band width and efficiency) are found to be essentially constant over the explored excitation range (λexc ≳ 250 nm). We compared the characteristics of the produced interstellar dust analog to the constraints imposed by the ERE observations. Conclusions. As for ERE observations, PL efficiencies and band widths of a-C:H are both correlated to the PL central wavelengths. The excitation ...

Topics
  • nanoparticle
  • impedance spectroscopy
  • photoluminescence
  • amorphous
  • Carbon
  • Oxygen
  • Silicon
  • chemical vapor deposition
  • quenching
  • infrared spectroscopy