Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Caffau, E.

  • Google
  • 1
  • 5
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2009Sulfur in the globular clusters <ASTROBJ>47 Tucanae</ASTROBJ> and <ASTROBJ>NGC 6752</ASTROBJ>11citations

Places of action

Chart of shared publication
Chieffi, Alessandro
1 / 7 shared
Limongi, M.
1 / 3 shared
Sbordone, L.
1 / 2 shared
Bonifacio, P.
1 / 2 shared
Ludwig, H. -G.
1 / 1 shared
Chart of publication period
2009

Co-Authors (by relevance)

  • Chieffi, Alessandro
  • Limongi, M.
  • Sbordone, L.
  • Bonifacio, P.
  • Ludwig, H. -G.
OrganizationsLocationPeople

article

Sulfur in the globular clusters <ASTROBJ>47 Tucanae</ASTROBJ> and <ASTROBJ>NGC 6752</ASTROBJ>

  • Chieffi, Alessandro
  • Limongi, M.
  • Sbordone, L.
  • Bonifacio, P.
  • Caffau, E.
  • Ludwig, H. -G.
Abstract

Context: The light elements Li, O, Na, Al, and Mg are known to show star-to-star variations in the globular clusters <ASTROBJ>47 Tuc</ASTROBJ> and <ASTROBJ>NGC 6752</ASTROBJ>. Such variations are interpreted as coming from processing in a previous generation of stars. <BR />Aims: In this paper we investigate the abundances of the α-element sulfur, for which no previous measurements exist. In fact this element has not been investigated in any Galactic globular cluster so far. The only globular cluster for which such measurements are available is <ASTROBJ>Terzan 7</ASTROBJ>, which belongs to the <ASTROBJ>Sgr dSph</ASTROBJ>.<BR />Methods: We use high-resolution spectra of the S i Mult. 1, acquired with the UVES spectrograph at the 8.2 m VLT-Kueyen telescope, for turn-off and giant stars in the two globular clusters. The spectra were analysed making use of ATLAS static plane parallel model atmospheres and SYNTHE spectrum synthesis. We also compute 3D corrections from CO^5BOLD hydrodynamic models and apply corrections due to NLTE effects taken from the literature.<BR />Results: In the cluster NGC 6752 sulfur has been measured only in four subgiant stars. We find no significant star-to-star scatter and a mean 〈[S/Fe]〉 = +0.49 ± 0.15, consistent with what is observed in field stars of the same metallicity. In the cluster 47 Tuc we measured S in 4 turn-off and 5 subgiant stars with a mean 〈[S/Fe]〉 = +0.18 ± 0.14. While this result is compatible with no star-to-star scatter we notice a statistically significant correlation of the sulfur abundance with the sodium abundance and a tentative correlation with the silicon abundance. <BR />Conclusions: The sulfur-sodium correlation is not easily explained in terms of nucleosynthesis. An origin due to atomic diffusion can be easily dismissed. The correlation cannot be easily dismissed either, in view of its statistical significance, until better data for more stars is available.Based on observations made with the ESO VLT-Kueyen telescope at the Paranal Observatory, Chile, in the course of the ESO-Large Programme 165.L-0263.

Topics
  • impedance spectroscopy
  • cluster
  • Sodium
  • Silicon