People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Glynne-Jones, Peter
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2019Acoustofluidic particle steeringcitations
- 2014Acoustic devices for particle and cell manipulation and sensingcitations
- 2013The effect of ultrasound-related stimuli on cell viability in microfluidic channelscitations
- 2013Planar particle trapping and manipulation with ultrasonic transducer arrays
- 2001Towards a piezoelectric vibration-powered microgeneratorcitations
Places of action
Organizations | Location | People |
---|
article
Towards a piezoelectric vibration-powered microgenerator
Abstract
As MEMS and Smart Material technologies advance, embedded and remote applications are becoming more widespread. Powering these systems can be a significant engineering problem, as traditional solutions such as batteries are not always appropriate. An inertial generator is developed that uses thick-film piezoelectric technologies to produce electrical power from vibrations in the environment of the device. The device validates the concept, and produces an output of 3uW. Predictions show that orders of magnitude increase in power output are possible.