Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Khan, Jameel B.

  • Google
  • 2
  • 7
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Three‐dimensional finite‐element analysis multiphysics modelling of electromagnetic Joule heating in carbon fibre composites5citations
  • 2019Experimental Electrical Characterisation of Carbon Fibre Composites (CFCs) for use in Future Aircraft Applications16citations

Places of action

Chart of shared publication
Gresil, Matthieu
1 / 31 shared
Soutis, Costas
2 / 356 shared
Tuohy, Paul M.
1 / 2 shared
Smith, Alexander C.
1 / 2 shared
Lambourne, Alexis
1 / 1 shared
Smith, Alexander
1 / 1 shared
Tuohy, Paul
1 / 3 shared
Chart of publication period
2020
2019

Co-Authors (by relevance)

  • Gresil, Matthieu
  • Soutis, Costas
  • Tuohy, Paul M.
  • Smith, Alexander C.
  • Lambourne, Alexis
  • Smith, Alexander
  • Tuohy, Paul
OrganizationsLocationPeople

article

Experimental Electrical Characterisation of Carbon Fibre Composites (CFCs) for use in Future Aircraft Applications

  • Khan, Jameel B.
  • Lambourne, Alexis
  • Smith, Alexander
  • Soutis, Costas
  • Tuohy, Paul
Abstract

This paper presents experimental testing of samples from two unidirectional Carbon Fibre Composite (CFC) panels to determine the factors that influence the electrical properties of CFCs and to also determine the temperature co-efficient of resistance. The CFC panels were manufactured by two different techniques to compare the impact of the manufacturing process on the electrical properties. Various electrical conductivity measurement methods were evaluated to determine the most consistent and accurate technique. The influence of sample geometry on the measured electrical conductivity was also investigated. Thermal imaging was used to image resistive losses and illustrate the current paths through the fibres within the CFC test samples. Finally, the effects of increasing temperature on the CFC samples are presented, illustrating that CFCs have a negative temperature co-efficient.

Topics
  • Carbon
  • composite
  • electrical conductivity
  • thermography