People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Van Sark, Wilfried G. J. H. M.
Utrecht University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2019Proof of Concept for a Novel and Smart Shade Resilient Photovoltaic Modulecitations
- 2017Heterojunction Silicon Solar Cellscitations
- 2016A cost roadmap for silicon heterojunction solar cellscitations
- 2015Life-cycle greenhouse gas emissions and energy payback time of current and prospective silicon heterojunction solar cell designscitations
- 2014Long-term optical stability of fluorescent solar concentrator platescitations
- 2010Towards upconversion for amorphous silicon solar cellscitations
- 2010Using amorphous silicon solar cells to boost the viability of luminescent solar concentratorscitations
Places of action
Organizations | Location | People |
---|
article
Proof of Concept for a Novel and Smart Shade Resilient Photovoltaic Module
Abstract
In this study, the performance of a shade resilient smart module is studied under a dynamic shading pattern. A smart module architecture is developed to mitigate the non-linear shading effect on the module performance. Partial shading decreases the output current of the shaded cells and affects the unshaded cells’ output power. After distributing the module cells into small groups, based on a least square support vector machine optimisation method, DC–DC buck converters compensate the decreased current levels, by adjusting the output current and voltage level from any individual group of cells. The system is simulated in the MATLAB Simulink environment, and the output results are presented. Results show that the module performs efficiently and output power of the unshaded groups of cells never decreased because of the effect of shading on the other groups. Additionally, the maximum output power is harvested from all groups simultaneously. Prototype hardware is designed and built to implement the proof of concept. The real-time results of hardware testing show that the smart module performs as expected and mitigates partially shaded conditions by extracting maximum power from each group, regardless of other groups shading condition.