People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Łukowicz, Krzysztof
Jagiellonian University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2021Microstructure and in vitro evaluation of extruded and hot drawn alloy MgCa0.7 for biodegradable surgical wirescitations
- 2020Properties of scaffolds based on chitosan and collagen with bioglass 45S5citations
- 2019New insights into the PLGA and PCL blending: physico-mechanical properties and cell responsecitations
- 2017Characterization of gelatin and chitosan scaffolds cross-linked by addition of dialdehyde starchcitations
Places of action
Organizations | Location | People |
---|
article
Properties of scaffolds based on chitosan and collagen with bioglass 45S5
Abstract
Scaffolds based on chitosan (CTS), collagen (Coll) and glycosaminoglycans (GAG) mixtures cross-linked by tannic acid (TA) with bioglass 45S5 addition were obtained with the use of the freeze-drying method. The prepared scaffolds were characterised for morphology, mechanical strength and degradation rate. Moreover, cell viability on the obtained scaffolds was measured with and without the presence of ascorbic acid and dexamethasone. The main purpose of the research was to compare the effectiveness of bioglass 45S5 influence on the physicochemical and biological properties of scaffolds. The results demonstrated that the scaffolds based on the blends of biopolymers cross-linked by TA are stable in an aqueous environment. Scanning electron microscope images allowed the observation of a porous scaffold structure with interconnected pores. The addition of bioglass nanoparticles improved the mechanical properties and decreased the degradation rate of composite materials. The biological properties were improved for 20% tannic acid addition compared to 5%. However, the addition of bioglass 45S5 did not change to cells response significantly.