Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ward, Christopher P.

  • Google
  • 2
  • 5
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019REPOINT-light full-scale track switchcitations
  • 2010Wheel-rail profile condition monitoring15citations

Places of action

Chart of shared publication
Harrison, Tim
1 / 1 shared
Dutta, Saikat
1 / 2 shared
Olaby, Osama
1 / 2 shared
Dixon, Roger
2 / 2 shared
Goodall, Roger M.
1 / 1 shared
Chart of publication period
2019
2010

Co-Authors (by relevance)

  • Harrison, Tim
  • Dutta, Saikat
  • Olaby, Osama
  • Dixon, Roger
  • Goodall, Roger M.
OrganizationsLocationPeople

document

Wheel-rail profile condition monitoring

  • Ward, Christopher P.
  • Goodall, Roger M.
  • Dixon, Roger
Abstract

<p>Increased railway patronage worldwide is putting pressure on rolling stock and infrastructure to operate at higher capacity and with improved punctuality. Condition monitoring is seen as a contributing factor in enabling this and is highlighted here in the context of rolling stock being procured with high capacity data buses, multiple sensors and centralised control. This therefore leaves scope for advanced computational diagnostic concepts. The rail vehicle bogie and associated wheelsets are one of the largest and most costly areas of maintenance on rolling stock and presented here is a potential method for real time estimation of wheel-rail contact wear to move this currently scheduled based assessment to condition based assessment. This technique utilises recursive 'grey box' least squares system identification, used in a piecewise linear manner, to capture the strongly discontinuous nonlinear nature of the wheel-rail geometry.</p>

Topics
  • impedance spectroscopy