People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Siew, Wh
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2021Influence of octavinyl-polyhedral oligomeric silsesquioxane on the electric treeing resistance of polypropylene
- 2021Octavinyl polyhedral oligomeric silsesquioxane on tailoring the DC electrical characteristics of polypropylenecitations
- 2020Nanocomposites based on magnesium-oxide/aluminum-nitride/polypropylene for HVDC cable insulationcitations
- 2020Effect of different surface treatment agents on the physical chemistry and electrical properties of polyethylene nano-alumina nanocompositescitations
- 2018Filler and additive effects on partial discharge degradation of PET films used in PV devicescitations
- 2018Partial discharge behaviour of biaxially orientated PET filmscitations
- 2016Long term testing and analysis of dielectric samples under DC excitation
- 2013Fault location and diagnosis in a medium voltage EPR power cablecitations
Places of action
Organizations | Location | People |
---|
article
Octavinyl polyhedral oligomeric silsesquioxane on tailoring the DC electrical characteristics of polypropylene
Abstract
<p>This work reports the effect of octavinyl polyhedral oligomeric silsesquioxane (OvPOSS) on tuning the electrical performance of polypropylene (PP). OvPOSS with different content are introduced into PP using the solution method. The microstructural morphology, crystallinity behaviour, breakdown strength, DC conductivity, space charge formation, and trapping level distribution are measured. The results indicate that the OvPOSS nanofiller can be dispersed uniformly with a doping content of 2.0 phr or less. The DC conductivity is decreased, and the breakdown strength of OvPOSS/PP nanocomposites is significantly increased. The space charge accumulation of the OvPOSS/PP nanocomposites is significantly suppressed due to the introduction of deeper traps by the OvPOSS nanofiller. Finally, the experimental results demonstrate that the OvPOSS nanofiller can greatly increase the electrical performance of the base PP and the OvPOSS/PP nanocomposites have much potential for HVDC applications. They further demonstrate that the PP is environmental-friendly due to its thermo-plastic property, which can be recycled after the manufacture.</p>