People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chung, S. Y.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Low sidewall damage plasma etching using ICP-RIE with HBr chemistry of Si/SiGe resonant interband tunnel diodes
Abstract
<p>The effect and influence of dry plasma etching processes of Si/SiGe using HBr for the formation of diode mesa structures has been investigated to minimise sidewall leakage current. To characterise sidewall damage electrically, Si-based resonant interband tunnel diodes (RITD) were processed and the completed RITDs compared by their peak-to-valley current ratio (PVCR) and valley current density (VCD), which are sensitive to defect related currents. Dry processed RITDs were compared to reference RITDs fabricated by wet chemical etching (HNO<sub>3</sub>:HF:H<sub>2</sub>O=100:1:100). The combination of HBr process gas and very low substrate bias power (10W) for inductively coupled plasma reactive ion etching (ICP-RIE) yielded the better results. The resulting RITDs processed by ICP-RIE using HBr chemistry show high PVCR of 4.02 with VCD of 32A/cm<sup>2</sup> while wet etched RITDs show a PVCR of only 2.81 with VCD of 40A/cm<sup>2</sup>. Hydrogen passivation during the HBr plasma process may play a role that overcomes the slightly higher surface roughness compared to wet etching.</p>